JOURNAL OF CHEMICAL & ENGINEERING DATA

Solubility of Solids in Sub- and Supercritical Fluids: a Review

Mojca Škerget,* Željko Knez, and Maša Knez-Hrnčič

Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

ABSTRACT: A review of solubility data for solid compounds in sub- and supercritical fluids published in the literature between 2005 and 2010 is given in tabular form along with the temperature and pressure ranges and the correlation methods applied by the authors for modeling the experimentally determined data. Compounds are classified into groups on the basis of their chemical nature (inorganic, organometallic, aromatic, nonaromatic organic, polymer), except for biological and pharmaceutical compounds, which are considered as a separate group based on their functionality. For each group of compounds, new findings are reviewed and discussed. Supercritical CO_2 was the preferred solvent for most of the applications, although an increasing interest in other solvents at elevated pressure has been observed, especially for fluorinated hydrocarbons, water, and propane.

1. INTRODUCTION

Because of environmental concerns and increasingly strict legislation aiming to lower detrimental environmental impacts as well as growing demand by consumers for more advanced and safe products, new modes of production in the chemical and related industries have been intensively studied in the past years. The studies have been based on progress that has been made in process design and control using the scientific methods of chemical engineering. Among the promising technologies that have been seriously considered for practical applications are also high-pressure technologies and the use of sub- and supercritical fluids, which represent an attractive green alternative to organic solvents conventionally used in various unit operations such as separation processes (extraction, sorption processes, chromatography, drying, membrane separations, etc.), mechanical processes (extrusion, homogenization, emulsification, micronization, crystallization, impregnation, encapsulation, etc.), and chemical and biochemical reactions. Processes with sub- and supercritical fluids have been intensively researched for use in different industrial branches, including agriculture and food, cosmetics, pharmaceuticals, medicine, coatings, textiles, electronics and semiconductors, and waste treatment. For all of these processes, the crucial data are physicochemical data of pure compounds, phase equilibrium data, and mass- and heat-transport data.

Several reviews of high-pressure phase equilibrium data published before 2005 are available in the literature,¹⁻¹⁴ and a compilation of data on solubility in supercritical (SC) CO_2 published from the 1960s to 2004 in both tabular and graphical form and covering 783 different compounds was recently published by Gupta and Shim.¹⁵

It is important to note that today, 60% of all products sold by chemical companies are crystalline, polymeric, or amorphous solids. These complex materials must have a clearly defined physical shape to meet the designed and desired quality standards. This also applies to pastelike and emulsified products.¹⁶

The present paper reviews the phase equilibrium data for compounds that are solid at room temperature (and also in some cases their analogous liquid derivatives of low volatility) in systems with supercritical fluids (SCFs) published in the period from 2005 to 2010. On the basis of a review of the latest research on phase equilibria for different systems, the use of SCFs for different applications is discussed.

Compounds are classified into different groups: inorganic compounds, organometallic compounds, biological and pharmaceutical compounds, other aromatic and other nonaromatic organic compounds, and polymers; only data on the solubility of polymers in pressurized fluids have been considered here, while articles dealing with the solubility and diffusivity of gases in polymers have not been included in this review. Similarly, systems involving ionic liquids (ILs) have not been considered because it is generally the case that CO_2 has excellent solubility in many ILs while ILs have little to no solubility in CO_2 .¹⁷

The search strategy was as follows: for the *Journal of Supercritical Fluids* and *Fluid Phase Equilibria*, the tables of contents of all volumes published between 2005 to 2010 were systematically searched. For the *Journal of Chemical & Engineering Data*, *Industrial & Engineering Chemistry Research*, and the *Journal of Chemical Thermodynamics*, online searches for particular keywords (such as solubility and supercritical or phase equilibria and high-pressure) were performed. The above journals were chosen on the basis of the work done by Dohrn et al.,⁴ who identified the major journals with the largest numbers of articles dealing with high-pressure fluid-phase equilibria in the years from 2000 to 2004. Finally, an online search (ISI Web of Knowledge) for the same keywords was performed. Considered were the papers for which at least one data point was measured at a pressure of 1 MPa or higher.

2. SYSTEMS INVESTIGATED

The literature review showed that SC CO_2 is the preferred solvent for most of the applications because of its useful properties. It is a clean and versatile solvent and a promising alternative to toxic volatile organic compounds (VOCs) and chlorofluorocarbons (CFCs). SC CO_2 is a good solvent for nonpolar compounds, while the solubility of some polar and ionic

Special Issue: John M. Prausnitz Festschrift

Received:	October 29, 2010
Accepted:	January 18, 2011
Published:	February 22, 2011

compounds having high molecular weight in SC CO₂ is very low, limiting its application in industry. Therefore, there is also an increasing interest in other solvents for use at elevated pressures, especially for fluorinated hydrocarbons (HFCs), water, and propane. Fortunately, polar substances dissolve in HFCs such as trifluoromethane (R23), difluoromethane (R32), pentafluoroethane (R125), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), 1,1-difluoroethane (R152a), 1,1,1,2,3,3, 3-heptafluoropropane (R227ea), and dimethyl ether (DME).¹⁸ The fluids that were investigated as solvents and their properties are summarized in Table 1.

2.1. Inorganic Compounds. The review of systems involving inorganic compounds is given in Table 2. Only the following binary systems involving inorganic compounds were investigated: sulfur in CO_2 ; phosphate and sulfate salts, monovalent alkali nitrates, and alkali chlorides in H_2O ; and alkali-metal iodides in NH₃. Most of the solubility data were measured using subcritical water (SBCW) or supercritical water (SCW). The investigated pressure range was between 8 and 30 MPa, while the temperatures were high (up to 690 K).

The sulfur– CO_2 system was investigated because of problems reported in recent years that elemental sulfur forms deposits in natural gas transmission line systems.²⁷ Available experimental data on the solubility of sulfur in gases are for much higher ranges of temperature, pressure, and hydrogen sulfide amount than those under transport conditions for natural gas. Therefore, solubility data for sulfur in the simple gases that are components of natural gas, such as CH₄ and CO_2 , are needed.²⁷

SCW has been considered as a medium of choice for reactions, polymerization, destruction of waste components, gasification of biomass, and particle formation.²¹ Applications using SCW often encounter the presence of inorganic compounds in feed streams, most often with a minor concentration. Since the polarity of

Table 2. Solubilities of Inorganic Compounds (X) in Pressurized Fluids (S)

water in its SC state is reduced, the ability of water to dissolve inorganic compounds is reduced, and salts precipitate and form a solid phase. This can lead to damage of the equipment via erosion, scaling, and corrosion or influence the main reaction

Table 1. Physicochemical Properties^{*a*} of Fluids¹⁹

fluid	$T_{\rm c}/{\rm K}$	P _c /MPa	ω	$10^{30} \cdot \mu/C \cdot m$
methane (CH ₄)	190.6	4.6	0.011	0
ethane (C_2H_6)	305.3	4.87	0.099	0
ethene (C_2H_4)	282.4	5.04	0.087	0
propane (C_3H_8)	369.8	4.25	0.152	0.280
propene (C_3H_6)	365.6	4.665	0.141	1.221
<i>n</i> -butane (C_4H_{10})	425.1	3.8	0.201	0.167
isobutane (R600a)	407.8	3.64	0.185	0.440
1-butene $(C_4H_8)^{20}$	419.5	4.02	0.194	1.001
pentane (C_5H_{12})	469.7	3.37	0.251	1.234
hexane (C_6H_{14})	507.8	3.03	0.299	0.167
dimethyl ether $(C_2H_6O)^{20}$	400.1	5.40	0.276	4.336
difluoromethane (R32)	351.3	5.78	0.277	6.598
trifluoromethane (R23)	299.3	4.83	0.263	5.500
chlorodifluoromethane (R22)	369.3	4.99	0.221	4.863
trichlorofluoromethane (R11)	471.1	4.41	0.189	1.501
1,1-difluoroethane (R152a)	386.4	4.52	0.275	7.545
1,1,1,2-tetrafluoroethane (R134a)	374.2	4.06	0.327	6.865
1,1,1,3,3,3-hexafluoropropane (R236fa)	398.1	3.20	0.377	6.611
carbon dioxide (CO ₂)	304.1	7.38	0.224	0
sulfur hexafluoride (SF_6)	318.7	3.75	0.210	0
ammonia (NH ₃)	405.4	11.33	0.256	4.903
dinitrogen monoxide (N_2O)	309.5	7.25	0.162	0.537
water (H ₂ O)	647.1	22.06	0.344	6.188

 a $T_{c\prime}$ critical temperature; $P_{c\prime}$ critical pressure; ω , accentric factor; μ , dipole moment.

14010 21 00	iuo milio	or morganic et	,			
Х	S	$T_{\rm fus}/{ m K}^a$	$P_{\rm min}/{\rm MPa}$ to $P_{\rm max}/{\rm MPa}$	$T_{\rm min}/{\rm K}$ to $T_{\rm max}/{\rm K}$	correlation model	ref
$CaCl_2$	H_2O	1045	18.5 to 23.5	660 to 690	enthalpy approach	21
$CaCl_2$	H_2O	1045	11 to 14	623 to 673	ionization and hydration approach	22
CaHPO ₄	H_2O	643	20.5 to 24.2	665 to 690	enthalpy approach	23
CaSO ₄	H_2O	1733	18.8 to 23.2	655 to 675	enthalpy approach	23
CsI	NH_3	899	10.97 to 12.83	418.4	empirical approach	24
KCl	H_2O	1043	18 to 23.5	653 to 693	enthalpy approach	25
KI	NH_3	954	9.7 to 14.4	419.5 to 426.0	empirical approach	24
KNO3	H_2O	607	18 to 23.5	653 to 693	enthalpy approach	25
LiCl	H_2O	878	18 to 23.5	653 to 693	enthalpy approach	25
LiCl	H_2O	878	7 to 11	623 to 673	ionization and hydration approach	22
LiNO ₃	H_2O	537	18 to 23.5	653 to 693	enthalpy approach	25
$MgCl_2$	H_2O	987	18.5 to 23.5	660 to 690	enthalpy approach	21
MgSO ₄	H_2O	1397	18.8 to 23.2	655 to 675	enthalpy approach	23
NaCl	H_2O	1074	17 to 24	543 to 683	enthalpy approach, C _p approach,	26
					empirical approach, Flory—Huggins approach	
NaCl	H_2O	1074	18 to 23.5	653 to 693	enthalpy approach	25
NaH_2PO_4	H_2O	>443 (dec. ^b)	20.5 to 24.2	665 to 690	enthalpy approach	23
Na ₂ HPO ₄	H_2O	>523	20.5 to 24.2	665 to 690	enthalpy approach	23
NaI	NH_3	934	8.18 to 11.63	418.4	empirical approach	24
NaNO ₃	H_2O	579	18 to 23.5	653 to 693	enthalpy approach	25
sulfur	CO_2	390 to 393	10 to 30	333 to 363	-	27
a -			h			

^{*a*} T_{fus}: melting temperature of compound X. ^{*b*} dec.: decomposes.

and processes inside the systems. In order to avoid these problems and predict the influence of these compounds, it is vital to possess knowledge of the properties of the most common inorganic compounds in SCW.²¹

The solubilities of alkali metal iodides in supercritical ammonia (SCA) were studied by Sciaini et al.²⁴ A very interesting procedure for the destruction of hazardous materials (e.g., chemical weapons) is the use of solvated electrons. Solvated electrons are usually produced by dissolution of alkali metals in ammonia. However, another possibility for obtaining solvated electrons is to generate them by irradiation of iodides dissolved in different solvents, especially SCA, thus allowing the reaction capacity of the medium to be coupled with fine control of the solvent density.²⁴

2.2. Organometallic Compounds. SC CO₂ is of interest as an alternative to organic solvents for the extraction of metal ions from waste soils and water and from solid and liquid wastes.²⁸ However, because of the very poor solubility of metal ions in SC CO₂, direct extraction of metal ions is difficult. Recent studies have demonstrated that noncharged metal complexes with chelating ligands lead to an increase in solubility of metal ions in SC CO₂.²⁸ For optimizing the extraction process, it is necessary to examine the solubility of metal–chelate complexes in SC CO₂.

Furthermore, SC CO_2 has recently been used to make polymer-metal nanocomposites and metal thin films on high-aspect-ratio surfaces of semiconductors. In these processes, the solubilities of metal complexes in SC CO_2 are the essential data.²⁹

Currently, the semiconductor industry requires the development of novel deposition processes. The SCF deposition technique has received much attention for deposition of thin films on high-aspect-ratio surfaces of wafers or microchips. This technique is expected to markedly improve the coatability, embedded quality, and deposition rate and to increase the number of feasible precursors in comparison with existing methods such as physical vapor deposition, chemical vapor deposition, and atomic layer deposition.³⁰

Furthermore, noble-metal complexes that are soluble in SC CO_2 have been used for the fabrication of catalysts and nanofunctional materials. In these efforts, an important issue is controlling the size and size distribution of the nanoparticles. These characteristics depend on the nucleation conditions, which are closely related to a solubility change in the SC CO_2 process. Thus, the solubility of these complexes in SC CO_2 is important not only for the success of the process but also for microstructure design.³¹

A large number of metal complexes with various ligands have been investigated experimentally to date.³² Reviews of these data can be found in the literature.^{33–36} It has been found that in general, complexes containing cyclopentadienyl and carbonyl ligands exhibit high solubilities in SC CO₂.³³ Complexes with ligands such as β -diketonate, dithiocarbamate, phosphine, and amine can also be used for applications in CO₂.^{34,35}

The latest studies to investigate the influence of the ligands and metal atoms of metal complexes on the solubility in CO₂ are reviewed in Table 3. The studied systems include various β -diketonate [e.g., 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), acetylacetonate (acac), trifluoroacetylacetonate (tfacac), and hexafluoroacetylacetonate (hfacac)], cyclopentadienyl (cp), cyclooctadiene (cod), and dithiocarbamate (dtc) complexes with metals, including silver, copper, nickel, palladium, rhodium, ruthenium, cobalt, chromium, iron, manganese, osmium, vanadium, platinum, potassium, rubidium, titanium, zinc, zirconium, lithium, and uranium (as uranyl ions).

2.3. Biological and Pharmaceutical Compounds. Investigated systems with biological compounds (Table 4) include phenolic compounds, chalcones, carotenoid pigments, fatty acids, amino acids, derivatized amino acids, alkaloids, antioxidants, pyrazines, biocides, and carbohydrates (with a view toward applying the appropriate extraction conditions to fractionate prebiotic sugars from complex carbohydrate mixtures, etc.⁹⁸). Systems with pharmaceutical compounds (Table 4) include antilipemic agents, nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoid drugs, anticancer and anti-HIV drugs, calcium channel blockers, antiandrogens, statins, etc.

The phase equilibrium data of these compounds in SCFs are necessary for designing separation or formulation processes such as micronization, impregnation, and encapsulation of drugs in biopolymer nano- or microparticles for controlled-release formulations. For these applications, CO_2 -drug-polymer systems have been studied.⁵⁴

For this group of compounds, the most investigated solvent is CO_2 , but the potential use of other solvents such as SBCW, HFCs, propane, and ethane have also been investigated. For example, Liu et al.¹¹¹ have reported that the solubility of the polar solute L-proline in the subcritical HFC R134a is much higher than in the most commonly used supercritical solvent, CO_2 .

Water is a solvent with tunable polarity. As the temperature of water increases, its polarity decreases. The reduction in polarity enables water to dissolve a variety of hydrophobic organic compounds. Recently, SBCW [defined as water between (373 and 573 K)] was used to dissolve a number of pharmaceutical ingredients, which were then precipitated by injecting the hot SBCW/pharmaceutical solutions into room-temperature water. The sizes of the resulting particles varied from (0.5 to 100) μ m.⁶⁶

SC CO₂ is generally a poor solvent for a wide range of hydrophilic and polar substances. One possibility for enhancing the solubility is to use cosolvents. Another very promising approach for enhancing the solubility is to use water-in-SC CO₂ (W/C) microemulsions.¹²³ A W/C microemulsion is formed when small-diameter droplets of polar chemicals are dispersed in CO₂. The aqueous phase especially disperses as nanosized droplets are surrounded by a monolayer of surfactant molecules in the continuous CO₂-rich phase of the W/C microemulsion. Using SC CO₂ to create a W/C microemulsion may be advantageous in some chemical processes, such as extraction, cleaning, nanoparticle synthesis, and chemical reactions. Knowledge of the solubilization amount is therefore essential for the application of these processes based on W/C microemulsions.¹²³

Another way of enhancing the solubility of polar compounds is to add CO_2 -philic groups as side chains to molecules of the compounds. Recently, hydrocarbons substituted with carbonyl groups have been shown to be highly soluble in supercritical carbon dioxide.⁹⁹ Dilek et al.⁹⁹ and Hong et al.¹¹² investigated sugar acetates, which are a class of materials with the potential for high solubility in carbon dioxide. The high solubility of acetylated molecules in CO_2 is attributed to the Lewis acid—Lewis base interaction between CO_2 and the carbonyl group. Weak but cooperative hydrogen bonding between the hydrogen of the carbonyl group and the oxygen of CO_2 is the second reason for the enhanced solubility of these sugar acetates.⁹⁹

Table 3. Solubilities of Organometallic Compounds (X) in Pressurized Fluids (S) + Cosolvents (C)

Х	S	С	$T_{\rm fus}/{\rm K}^a$	$P_{\rm min}/{\rm MPa}$ to $P_{\rm max}/{\rm MPa}$	$T_{\rm min}/{\rm K}$ to $T_{\rm max}/{\rm K}$	correlation model	ref.
$A_{\alpha}(accc)^{b}$	60		$272 (doc^n)$	10 to 20	222	_	22
$Ag(acac)^{b}$	CO_2		373 (dec.)	10 to 30	212	Chractil	21
$Ag(thd)^c$	CO_2		5/5 (dec.)	10 to 30	313	_	31
$G_{a}(acce)^{b}$	CO_2		11.a.	10 to 30	212 to 242	Chrostil	20
$Co(acac)_3$	CO_2		445 to 447	10 to 17.5	313 10 545	_	30
$Co(thd)_{2}^{c}$	CO_2		$523 (dec^{n})$	10 to 19.8	313 to 3/3	Chrastil	20
$Co(thd)_3$	CO_2		$523 (dec.^n)$	10 to 17.0	313 10 545	_	32
$Cr(acac)_{a}^{b}$	CO2		483	12 3 to 30 3	313 to 343	Chrastil	30
$Cr(acac)_3^b$	CO_2	methanol	483	10.1 to 20.3	318	_	37
$Cr(acac)_{3}^{b}$	CO_2	ethanol	483	10.1 to 20.3	318	_	37
$Cr(acac)_3^b$	CO_2	TEE ^k	483	10.1 to 20.3	318	_	37
$Cr(acac)_{a}^{b}$	CO.	HEP ¹	483	10.1 to 20.3	318	_	37
$Cr(acac)_3^b$	CO_2	$BTMP^m$	483	10.1 to 20.3	318	_	37
$Cr(cr)_{a}^{d}$	CO2	DIM	445 to 447	10 to 17 5	333	_	32
$Cr(thd)_{c}^{c}$	CO.		501 to 506	10 to 18	313 to 343	Chrastil	29
$Cr(thd)_{3}^{c}$	CO2		501 to 506	10 to 15	333		32
Cu(acac)	CO.		$557 \text{ to } 561 \text{ (dec}^n)$	10 to 30	333	_	32
$Cu(acac)_2^b$	CO_2		557 to 561	10 to 30	313	Chrastil	31
$Cu(acac)_2$ $Cu(thd)_2$	CO_2		471	10 to 17 5	333	_	32
$Ee(cn)e^d$	CO_2		445 to 446	10 to 17.5	333	_	32
$Fe(cp)_2^d$	H.O		445 to 447	10 10 17.5	313 to 433	_	38
$Fe(tp)_2$ $Fe(tbd)_c$	$\Gamma_2 O$		452 to 458	10 to 15	313 10 433	_	30
K(thd) ^c	CO_2		+52 to +56	10 to 20	333	_	32
Li bis(trifluoroethyl)(dtc) ^e	CO_2		n.a.	9.9 to 24.9	208 to 318	Chrastil	30
Li dibutyl(dtc) ^e	CO_2		n 2 °	8 to 24.9	298 to 318	Chrastil	39
Li diethyl(dtc) ^e	CO_2		n 2 °	8 5 to 25	298 to 318	Chrastil	30
Li dipropul(dtc) ^e	CO_2		n.a.	10 to 25	298 to 318	Chrastil	30
Mn(cn), ^d	CO_2		445 to 447	10 to 20	333	_	32
$Mn(thd)_{a}^{c}$	CO_2		433 to 443	10 to 15	333	_	32
Ni(acac), ^b	CO_2		$503 (dec^{n})$	10 to 30	333	_	32
Ni(cn) ^d	CO2		445 to 447	10 to 17 5	333	_	32
$Ni(thd)_{a}^{c}$	CO.		498	10 to 25	333	_	32
$Os(cp)_2^d$	CO2		499 to 501	10 to 25	333	_	32
$Pd(acac)_{a}^{b}$	CO_2		$473 \text{ to } 524 \text{ (dec}^n)$	10 to 30	333	_	32
$Pd(acac)_{a}^{b}$	CO.		473 to 524	10 to 30	313	Chrastil	31
$Pt(acac)_2^b$	CO2		522 to 525	10 to 30	313	Chrastil	31
$Pt(cod)me_3^{f,g}$	CO2		n.a.°	10 to 20	333	_	32
$Rb(thd)^{c}$	CO ₂		n.a. ^o	10 to 20	333	_	32
$Rh(acac)_{2}^{b}$	CO ₂		536 to 537	10 to 30	313	Chrastil	31
$Rh(acac)(cod)^{bf}$	CO ₂		411 to 413	10 to 20	333	_	32
$Ru(acac)_{2}^{b}$	CO ₂		533	10 to 30	313	Chrastil	31
$\operatorname{Ru}(\operatorname{cp})_{2}^{d}$	CO ₂		467 to 471	10 to 17	333	_	32
$\operatorname{Ru}(\operatorname{thd})_{2}^{c}$	CO		na [°]	10 to 15	333	_	32
$Ru(thd)_{2}(cod)^{cf}$	CO2		n.a. ^o	10 to 15	333	_	32
$Ti(thd)_{2}^{c}$	CO ₂		n.a. ^o	10	333	_	32
$UO_2(acac)_2 dmso^{bh}$	CO2		n.a. ^o	10 to 25	313	Chrastil	28
$UO_2(hfacac)_2dmso^{i,h}$	CO ₂		n.a. ^o	10 to 25	313	Chrastil	28
$UO_2(tfacac)_2 dmso^{j,h}$	CO ₂		n.a. ^o	10 to 25	313	Chrastil	28
$V(cp)_2^d$	CO ₂		438 to 440	10	333	_	32
$Zn(thd)_2^c$	CO ₂		417	10 to 15	333	_	32
$Zr(thd)_{4}^{c}$	CO ₂		605 to 612	10 to 17.5	333	_	32
	6	LX b			1. , d 1	()· 1 ° L · 1.1	. 1

 ${}^{a}T_{\text{fus}}$: melting temperature of compound X. b acac: acetylacetonate. c thd: 2,2,6,6-tetramethyl-3,5-heptanedionate. d cp: cyclopentadienyl. e dtc: dithiocarbamate. f cod: cyclooctadiene. g me: methyl. h dmso: dimethyl sulfoxide. i hfacac: hexafluoroacetylacetonate. j tfacac: trifluoroacetylacetonate. k TFE: 2,2,2trifluoroethanol. l HFP: 1,1,1,3,3,3-hexafluoro-2-propanol. m BTMP: 3,5-bis(trifluoromethyl)phenol. n dec.: decomposes. o n.a.: data not available.

Furthermore, solubility enhancements by fluorination have been reported. Higashi et al. 140 measured the solubilities of

2-, 3-, and 4-trifluoromethylbenzoic acids in supercritical carbon dioxide and compared the data with those for

Table 4. Solubilities of Biological and Pharmaceutical Compounds (X) in Solvents (S) + Cosolvents (C)

Х	S	С	$t_{ m fus}/{ m k}~^a$	$P_{ m min}/ m MPa$ to $P_{ m max}/ m MPa$	$T_{ m min}/ m K$ to $T_{ m max}/ m K$	correlation model	ref.
acebutolol	CO2		solid. n.a. ^g	8 to 27.5	298 to 318	_	40
acetaminophen	CO_2		441 to 445	20	323	_	41
acetaminophen	CO ₂		441.2	11.14 to 25	313.3	M-S-T, Chrastil-G-M	42
acetazolamide	CO ₂	ethanol	531 to 532	15 to 20.1	313 to 323	Chrastil, M-S-T-Sauceau	43
2-acetoxybenzoic acid	CO ₂		408 to 409	10.1 to 28.0	308 to 328	-	45
2-acetoxybenzoic acid	CO ₂	methanol	408.2 to 411.2	10 to 20	318 to 328	PR EOS	53
2-acetoxybenzoic acid	CO_2	ethanol	408.2 to 411.2	10 to 20	318 to 328	PR EOS	53
2-acetoxybenzoic acid + benzoic acid	CO ₂		_	10.1 to 28.0	308 to 328	_	45
2-acetoxybenzoic acid +	CO_2		_	10.1 to 28.0	308 to 328	_	45
2-hydroxybenzoic acid							
2-acetoxybenzoic acid +	CO_2		_	10.1 to 28.0	308 to 328	-	45
2-hydroxybenzoic acid + benzoic acid							
2-acetoxybenzoic acid + D,L -PLA ^b	CO_2		_	7.5 to 10.0	313.15	-	54
2-acetoxybenzoic acid $+ L-PLA^{b}$	CO_2		_	7.5 to 10.0	313.15	_	54
N-acetyl-L-phenylalanine	CO_2		438.2 to 440.2	7.8 to 23.5	308.2	K-J	116
N-acetyl-L-phenylalanine ethyl ester	CO_2		solid, n.a. ^g	7.8 to 23.5	308.2 to 328.2	K-J	116
N-acetyl-L-tyrosine	CO_2		422.2 to 425.2	7.8 to 23.5	308.2	K-J	116
N-acetyl-L-tyrosine ethyl ester	CO_2		351.2 to 354.2	7.8 to 23.5	308.2 to 328.2	K-J	116
2-acetylpyrazine	CO_2		351.2	up to 20	298 to 373	PR EOS	44
4-aminoantipyrine	CO_2		382.15	10 to 22	308.2 to 328.2	M-S-T, Chrastil,	46
						solution model	
4-aminobenzene sulfonamide	CO_2		437 to 439	11 to 21	308.2 to 328.2	Chrastil	47
4-aminobenzene sulfonamide	CO_2	acetone	437 to 439	11 to 21	308.2 to 328.2	Chrastil-G	47
4-aminobenzoic acid	CO_2		460 to 462	8 to 21	308.2 to 328.2	M-S-T	48
2-aminobenzoic acid	CO_2		420.35	9.6 to 23.7	313 to 323	M-S-T	49
2-aminobenzoic acid	CO_2	menthol	420.35	9.6 to 23.7	313 to 323	M-S-T-Thakur and Gupta	49
anastrozole	CO ₂		354.2	12.2 to 35.5	308 to 348	Chrastil, dV-A,	50
						K-J, Bartle, Yu, Gordillo	
antipyrine	CO ₂		385.65	10 to 22	308.2 to 328.2	M-S-T, Chrastil,	46
artemisinin	CO		429.2 to 430.2	11 to 31	313 to 333	Chrastil. M-S-T	51
artemisinin	CO_2		429.2 to 430.2	10 to 25	308.2 to 328.2	Chrastil, Bartle, M-S-T.	52
	002					PR EOS, SRK EOS	-
astaxanthin	CO_2		solid, n.a. ^g	10 to 42	313 to 333	M-S-T	55
atenolol	CO_2		421 to 425	8 to 27.5	298 to 318	-	40
atorvastatin	CO_2		432.2 to 463.7	12.16 to 35.46	308 to 348	Chrastil, Bartle, K-J, M-S-T	56
azodicarbonamide	CO_2		224 to 225	10 to 30	308 to 328	_	41
beclomethasone dipropionate	CO_2		390 to 393	21.3 to 38.5	338 to 358	Bartle	58
benzoic acid	CO_2		395.6	12.12 to 29.8	338	_	59
benzoic acid	CO_2		395.6	up to 20.7	403.3 to 458.4		60
benzoic acid	H_2O		395.6	5	298 to 473	empirical model	61
benzoic acid	CO_2		395	10.1 to 28.0	308 to 328	_	45
bis(cyclohexyl)DH-PDC ^c	CO_2		546 to 548	12.2 to 35.5	328 to 348	Bartle	62
bis(4-cyclohexylbutyl)DH-PDC ^c	CO_2		437 to 438	12.2 to 35.5	338 to 358	Bartle	62
bis(2-cyclohexylethyl)DH-PDC ^c	CO_2		488 to 489	12.2 to 35.5	338 to 358	Bartle	62
bis(cyclohexylmethyl)DH-PDC ^c	CO_2		535 to 536	12.2 to 35.5	328 to 348	Bartle	62
bis(3-cyclohexylpropyl)DH-PDC ^c	CO_2		474 to 475	12.2 to 35.5	338 to 358	Bartle	62
bis(phenylbutyl)DH-PDC ^c	CO_2		409 to 410	12.2 to 35.5	338 to 358	Bartle	63
bis(phenylethyl)DH-PDC ^c	CO_2		477 to 478	12.2 to 35.5	338 to 358	Bartle	63
bis(phenylmethyl)DH-PDC ^c	CO_2		479 to 481	12.2 to 35.5	338 to 358	Bartle	63
bis(phenylpentyl)DH-PDC ^c	CO_2		401 to 402	12.2 to 35.5	338 to 358	Bartle	63
bis(phenylpropyl)DH-PDC ^c	CO_2		413 to 414	12.2 to 35.5	338 to 358	Bartle	63
bis(phenyltolyl)DH-PDC ^c	CO_2		511 to 512	12.2 to 35.5	338 to 358	Bartle	63
bixin + β -carotene	CO ₂		_	35	313 to 333	PR EOS	64
boldine	CO_2		435.2 to 437.2	8 to 40	298 to 333	M-S-T	65

				$P_{\rm min}/{\rm MPa}$ to	$T_{\rm min}/{ m K}$ to		
Х	S	С	$t_{ m fus}/{ m k}^{~a}$	$P_{\rm max}/{ m MPa}$	$T_{\rm max}/{\rm K}$	correlation model	ref.
budesonide	CO_2		494 to 505	21.3 to 38.5	338 to 358	Bartle	58
budesonide	H ₂ O		499.65	7	298 to 473	M-UNIFAC	66
budesonide	H ₂ O	methanol	499.65	7	298 to 473	M-UNIFAC	66
budesonide	H ₂ O	ethanol	499.65	7	298 to 473	M-UNIFAC	66
caffeine	CO ₂		500 to 501	15	313	_	67
caffeine	CO ₂	water	500 to 501	15	313	_	67
caffeine	CO ₂	ethanol	500 to 501	15	313	_	67
caffeine	CO ₂	water $+$ ethanol	500 to 501	15	313	_	67
caffeine	CO ₂	ethanol	500 to 501	15.2 to 30.0	323.2 to 343.2	_	68
caffeine	CO ₂	isopropanol	500 to 501	15.2 to 30.0	323.2 to 343.2		68
camphor	CO ₂		448 to 450	3.42 to 14.94	304 to 354	PR EOS	69
camphor	C ₂ H ₂		448 to 450	1.0 to 4.89	304 to 384	PR EOS	69
camphor	$CO_2 + C_2H_2$		448 to 450	2.4 to 15.02	304 to 354	PREOS	69
cannabinol	CO2		349.2 to	13.0 to 20.2	314 to 334	PR EOS	70
	002		350.2	1010 10 2012	511 (0 001	111200	, 0
capsaicin	CO ₂		335 to 338	7.81 to 25.62	298.2 to 328.3	M-S-T, Chrastil-G-M	42
capsaicin	CO_2		335 to 338	6 to 40	298 to 318	M-S-T, PR EOS, GC EOS	71
capsaicin	CO_2		335 to 338	10.4 to 22.9	313 to 333	M-S-T	72
carnosic acid	CO_2	ethanol	solid, n.a. ^g	27.5 to 40	313.2 to 333.2	GCA EOS	73
β -carotene	CO_2		451	12. to 20	313 to 323	-	74
β -carotene	CO_2	ethyl acetate	451	2.52 to 10.88	303 to 343	PR EOS	75
β -carotene	CO_2	ethanol	451	3.12 to 11.73	303 to 343	PR EOS	75
β -carotene	CO ₂		453 to 455	8.5 to 25.3	298 to 313	M-S-T, Chrastil-G-M	42
β -carotene	CO_2		449 to 457	15 to 28	313.2 to 333.2	PR EOS	76
β -carotene	CO ₂	ethanol	449 to 457	15 to 28	313.2 - 333.2	Chrastil-modified	77
β -carotene	CO_2	acetone	449 to 457	15 to 28	313.2 - 333.2	Chrastil-modified	77
β -carotene	CO ₂	<i>n</i> -hexane	449 to 457	15 to 28	313.2 - 333.2	Chrastil-modified	77
catechin	CO_2	ethanol + water	448 to 450	15 to 19	313	_	78
cholesteryl benzoate	CO_2		423	16.0 to 27.0	318.2	_	79
cholesteryl benzoate $+$ cholesteryl	CO_2		_	16 to 24	318.2	PR EOS	79
butyrate	2						
cholesteryl benzoate + cholesteryl	CO ₂		_	12.0 to 24.0	308.2 to 328.2	PR EOS, Chrastil, K-L Bartle, M-S-T	80
cholesteryl butyrate	CO		372	14.0 to 24.0	318.2		79
cinnamic acid	CO ₂		406.15	12.3 to 23.61	308.2 to 328.2	Chrastil, M-S-T.	81
	002		100.15	12.5 to 25.61	300.2 10 320.2	PR EOS, SRK EOS	01
trans-cinnamic acid	CO ₂		406.2	10 to 40	313.2 to 353.2	SRK EOS, GCA EOS	82
trans-cinnamic acid	CO_2	ethanol	406.2	10 to 40	313.2 to 353.2	SRK EOS, GCA EOS	82
climbazole	CO ₂		368 to 371	10 to 40	313.2 to 333.2	PR EOS, QLF EOS	83
clofibric acid	CO ₂		394.15	10 to 22	308 to 328	M-S-T, Chrastil, solution model	84
clozapine	CO_2		456	12.16 to 35.46	318 to 348	Chrastil, Bartle, K-J, M-S-T	85
<i>p</i> -coumaric acid	CO_2	e than ol + water	487 (dec. ^h)	15 to 19	313	_	78
coumarin	CO_2		344	11 to 24	308 to 328	PR EOS	86
diflunisal	CO ₂		492 to 493	9.1 to 24.6	308.2 to 328.2	PR EOS	87
4-dimethylaminoantipyrine	CO_2		381.15	10 to 22	308.2 to 328.2	M-S-T, Chrastil,	46
						solution model	
2,3-dimethylpyrazine	CO_2		285	up to 20	298 to 373	PR EOS	44
3,5-dinitrobenzoic acid	CO ₂		477.2 to	10 to 21	308 to 328	_	88
3,5-dinitrobenzoic acid	CO ₂	ethanol	477.2 to	10 to 21	318	Sovova, modified Sovova	88
			479.2				
3,5-dinitrobenzoic acid	CO_2	ethylacetate	477.2 to	10 to 21	308 to 328	Sovova, modified Sovova	88
	~~~		479.2	10	210	0 10 10	0.5
3,5-dinitrobenzoic acid	$CO_2$	<i>n</i> -propanol	477.2 to 479.2	10 to 21	318	Sovova, modified Sovova	88

				$P_{\rm min}/{\rm MPa}$ to	$T_{\rm min}/{\rm K}$ to		
Х	S	С	$t_{ m fus}/{ m k}~^a$	$P_{\rm max}/{\rm MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref.
3,5-dinitrobenzoic acid	$CO_2$	ethylene glycol	477.2 to 479.2	10 to 21	318	Sovova, modified Sovova	88
1.3-diphenyl-2-propenone	CO		328 to 332	9 to 22.17	308 to 338	Chrastil, PR EOS	89
dodecanoic acid	$CO_2$		316.4	9.9 to 22.7	308	PR EOS	109
dodecanoic acid	CO	ethanol	316.4	9.9 to 22.7	308	PREOS	109
dodecanoic acid	CO2	isoamvl alcohol	316.4	9.9 to 22.7	308	PR EOS	109
dutasteride	CO.	isoaniyi aconoi	515	12 1 to 35 5	308 to 348	Chrastil Bartle	90
enigallocatechin gallate	CO.		495.2 to	15 to 35	313	-	91
epiganocateerini ganate	$CO_2$		497.2 10	15 10 55	515		91
anigallocatachin gallata	CO.	acetone	497.2 495.2 to	15 to 35	313	_	01
epiganocatecinii ganate	$CO_2$	acetone	493.2 10	15 10 55	515		91
anigallocatachin gallata	CO	ethanol	497.2 495.2 to	15 to 35	313 to 333	Chrostil C. M.S.T. PR	01
epiganocatecinii ganate	$CO_2$	ethanoi	407.2	15 10 55	515 10 555		91
ethyl n aminahanzaate	CO		365	8 to 21	308 to 328	Chrostil	02
ethyl n hydroxybenzoate	$CO_2$		388 to 301	8 to 21	308 to 328	Chrastil	02
$ethyl p$ -hydroxybenzoate $\pm$	$CO_2$		_	8 to 21	308 to 328	Chrastil	92
ethyl p-nydroxybenzoate	$CO_2$			8 to 21	308 10 328	Cillastii	92
ethylyp-animobenzoate	CO		3/0 8	8 1 to 30 15	313 2 to 353 2	DR EOS	03
othylyanillin	D22		340.9	3.1 to 30.13	212.2 to 222.2	Chrostil	93
ethylvanillin	R25		349.0	$5.2 \ 10 \ 24.75$	313.2 to 333.2	Chrastil	94
athylyanillin	R134a		240.8	5.75 to 26.6	313.2 to 333.2	Chrastil	94
	K2501a		349.0	3.73 to 20.0	212.2 to 355.2		94
o-etnylvanillin	CO ₂		337.2	10.3 to 30.2	313.2 to 353.2	PR EUS	93
o-ethylvanillin	R23		337.2	4.33 to 20.13	313.2 to 333.2	Chrastil	94
o-ethylvanillin	R134a		337.2	4./S to 26.05	313.2 to 333.2	Chrastil	94
o-ethyivaniilin	R236fa		337.2	4.25 to 27.0	313.2 to 333.2	Chrastil	94 50
exemestane	$CO_2$		428.3	12.2 to 35.5	308 to 348	K-J, Bartle, Yu, Gordillo	50
felodipine	CO ₂		415.2 to 417.2	8 to 25	298 to 318	Chrastil	95
fenofibrate	CO ₂		358.65	10 to 22	308 to 328	M-S-T, Chrastil, solution model	84
ferulic acid	$CO_2$		441.2 to	10 to 35	308 to 338	Chrastil	96
			445.2				
finasteride	$CO_2$		525	12.1 to 35.5	308 to 348	Chrastil, Bartle	90
fluoranthene	$CO_2$		380 to 383	10.1 to 28.0	308 to 328	-	45
fluoranthene + benzoic acid	$CO_2$		_	12 to 28	318	_	45
fluoranthene $+$ 2-hydroxybenzoic	$CO_2$		_	12 to 28	318	-	45
acid + benzoic acid							
(±)- <i>trans</i> -4-(4'-fluoro-	CO ₂		395 to 397	9 to 24	308.2 to 328.2	Chrastil	139
methyl-piperidine							
S-fluorouracil	CO		282 to 286	12.5 to 25	308 to 328	_	41
flurbiprofen	CO2		383 to 385	10.76 to 22.12	303 to 323	PR EoS	97
flurbiprofen	CO2	methanol	383 to 385	10.03 to 24.07	303 to 313	PR EoS	97
flutamide	CO.	methanor	384	12.1 to 35.5	308 to 348	Chrastil Bartle	90
fluticasone propionate	CO.		545 to 546	38.5	358	-	58
fluvastatin	CO2		467.0 to	12.16 to 35.46	308 to 348	Chrastil, Bartle,	56
huvustuthi	002		470.0	12.10 10 33.10	300 10 310	K-I M-S-T	50
galactose	CO.	ethanol + water	436.2	10 to 30	333 to 373	SRK FOS	98
$\beta_{-D}$ -galactose pentaacetate	CO2	ctilation   water	412 to 415	9 to 16	308 to 323	-	99
gemfibrozil	$CO_2$		335.15	10 to 22	308 to 328	M-S-T. Chrastil	84
5	0.02		100	-		solution model	01
griseotulvin	H ₂ O		492	7	413 to 443	M-UNIFAC	101
griseotuivin		4.1	493	9.51 to 23.52	308 to 323	M-5-1	102
griseotulvin	$CO_2$	menthol	493	9.6 to 23.9	313 to 323	M-S-T—Thakur and Gupta	102

				$P_{\rm min}/{\rm MPa}$ to	$T_{\rm min}/{\rm K}$ to		
Х	S	С	$t_{ m fus}/{ m k}~^a$	$P_{\rm max}/{ m MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref.
heptanoic acid	$CO_2$		262.7	8.5 to 20	313.2 to 333.2	Chrastil, dV-A, Chrastil-A-L	103
hexadecanoic acid	$CO_2$		336.1	10 to 26.1	313 to 318	M-S-T, Chrastil-G-M	42
hexadecanoic acid	$CO_2$	ethanol	336.1	up to 20	303 to 343	PR EOS	124
hexadecanoic acid	$CO_2$		336.1	12.8 to 22.6	308 to 318	M-S-T	125
hexadecanoic acid	$CO_2$	ethanol	336.1	12.8 to 22.6	308 to 318	M-S-T	125
hexadecanoic acid	$CO_2$	3-methyl-1-butanol	336.1	12.8 to 22.6	308 to 318	M-S-T	125
hexadecanoic acid	$CO_2$		336.1	10.1 to 23.4	313 to 318	M-S-T	126
hexadecanoic acid	$CO_2$	ethanol	336.1	8.2 to 24.6	313	M-S-T	126
hexadecanoic acid	$CO_2$	2-propanol	336.1	10.9 to 20.7	313	M-S-T	126
hexadecanoic acid	$CO_2$		336.1	12.8 to 22.6	328 to 338	PR EOS, M-S-T, Chrastil	127
hydrogenated castor oil	$CO_2$		n.a. ^g	4.23 to 32.28	353 to 403	-	104
2-hydroxybenzamide	CO ₂		413.58	10 to 22	308.2 to 328.2	Chrastil, M-S-T, solution model	115
2-hydroxybenzoic acid	$H_2O$		432	5	298 to 473	empirical model	61
2-hydroxybenzoic acid	$CO_2$		432	10.1 to 28.0	308 to 328	_	45
2-hydroxybenzoic acid $+$ benzoic acid	$CO_2$		_	10.1 to 28.0	308 to 328	-	45
2-hydroxybenzoic acid $+$ D,L-PLA b	$CO_2$		_	7.5 to 10.0	313.2	-	54
2-hydroxybenzoic acid + L-PLA b	$CO_2$		_	7.5 to 10.0	313.2	-	54
2-hydroxy-5-sulfobenzoic acid	$CO_2$		378 to 383	8 to 21	308 to 328	Chrastil	135
2-hydroxy-5-sulfobenzoic	$CO_2$		_	8 to 21	308 to 328	Chrastil	135
acid $+ p$ -aminobenzoic acid							
ibuprofen	$CO_2$	acetone	346 to 349	10	298	Wubbolts	105
ibuprofen	$CO_2$	ethanol	346 to 349	10	298	Wubbolts	105
ibuprofen	$CO_2$		346 to 349	12 to 23	313	-	41
ibuprofen + D,L-PLA b	$CO_2$		_	7.5 to 10.0	313.15	-	54
ibuprofen + L-PLA ^b	$CO_2$		_	7.5 to 10.0	313.15	-	54
iodopropynyl butylcarbamate	$CO_2$		337 to 341	8.76 to 34.15	313.2 to 333.2	PR EOS, QLF EOS	106
isoniazid	CO ₂		444.2 to 446.2	13.0 to 18.5	308 to 313	Chrastil, M-S-T	107
ketoprofen	$CO_2$		366 to 367	6.5 to 30	298 to 328	-	108
ketoprofen + $PLGA^d$	$CO_2$		_	6.5 to 30	298 to 328	-	108
lactose	$CO_2$	e than ol + water	496.2	10 to 30	333 to 373	SRK EOS	98
lactulose	$CO_2$	e than ol + water	442.2	10 to 30	333 to 373	SRK EOS	98
lamotrigine	$CO_2$		491	12.16 to 35.46	318 to 348	Chrastil, Bartle, K-J, M-S-T	85
letrozole	CO ₂		454.2	12.2 to 35.5	308 to 348	Chrastil, dV-A, K-J, Bartle, Yu, Gordillo	50
lovastatin	$CO_2$		447.5	12.16 to 35.46	308 to 348	Chrastil, Bartle, K-J, M-S-T	56
lovastatin	$CO_2$	$DCM^{f}$	447.5	6.4 to 45	303.3 to 333.3	-	110
lycopene	$CO_2$		450	10 to 42	313 to 333	M-S-T	55
lycopene	$CO_2$		445 to 446	20 to 40	323 to 353	modified PR EOS	76
eta-D-maltose octaacetate	$CO_2$		432	up to 22	253 to 323	-	112
menthol	$CO_2$		305 to 307	7.29 to 23.56	308 to 323	M-S-T	102
4-methoxyphenylacetic acid	CO ₂		360.15	11.61 to 23.61	308.2 to 328.2	Chrastil, M-S-T, PRE OS, SRK EOS	81
2-methoxypyrazine	$CO_2$		liquid	up to 20	298 to 373	PR EOS	44
methyl 2-hydroxybenzoate	$CO_2$		265 to 266	9 to 31	343.2 to 423.2	Chrastil, PR EOS	113
2-methylpyrazine	$CO_2$		244	up to 20	298 to 373	PR EOS	44
mitotane	$CO_2$		349 to 351	up to 22	298.2 to 333.1	PR EOS	114
nabumetone	CO ₂		353.15	10 to 22	308.2 to 328.2	Chrastil, M-S-T, solution model	115
nadolol	$CO_2$		solid, n.a. ^g	8 to 27.5	298 to 318	_	40
naproxen	$CO_2$	acetone	426 to 427	10	298	Wubbolts	105
naproxen	$CO_2$	ethanol	426 to 427	10	298	Wubbolts	105
naproxen	$CO_2$		430 to 431	12 to 28	313	-	41
naproxen	CO ₂		427.7	15 to 40	313 to 353	K-J, M-S-T, EOS and fugacity approach	117

				$P_{\rm min}/{ m MPa}$ to	$T_{\rm min}/{ m K}$ to		
Х	S	С	$t_{\rm fus}/{ m k}^{~a}$	$P_{\rm max}/{\rm MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref.
naproxen	H ₂ O		427.7	7	403 to 443	M-UNIFAC	118
naringenin	11 <u>2</u> 0		520.2 to	, 10.3 to 11.5	313 to 333	MST	110
harmgenni	002		522.2 10	10.5 to +1.5	515 10 555	141-0-1	11)
N amhahangang tahanyialaning	60		323.2	7 9 40 22 5	208.2	VI	114
N-carbobenzoxy-L-phenylalanine	$CO_2$		358.2 to	7.8 to 23.5	308.2	K-J	110
			360.2				
N-carbobenzoxy-L-tyrosine	$CO_2$		368.2	7.8 to 23.5	308.2	K-J	116
nitrendipine	CO ₂		430.2 to	8 to 25	298 to 318	Chrastil	95
			431.2				
nonanedioic acid	$CO_2$		382.2 to	10 to 30	313.2 to 333.2	Chrastil, M-S-T, PR EOS	57
			384.2				
nonanoic acid	CO ₂		282.2	10 to 30	313.2 to 333.2	Chrastil-A-L	120
nonanoic acid	$CO_2$		282.2	8.5 to 30	313.2 to 333.2	Chrastil, dV-A,	103
						Chrastil-A-L	
octadecanoic acid	$CO_2$		343	12.8 to 22.6	328 to 338	PR EOS, M-S-T, Chrastil	127
octadecanoic acid	$CO_2$		343	12.8 to 22.6	308 to 318	M-S-T	125
octadecanoic acid	CO ₂	ethanol	343	12.8 to 22.6	308 to 318	M-S-T	125
octadecanoic acid	CO ₂	3-methyl-1-butanol	343	12.8 to 22.6	308 to 318	M-S-T	125
octanioc acid	CO2	o monji i outanoi	288.2 to	8 5 to 30	313 2 to 333 2	Chrastil dV-A	103
octanioe acia	002		200.2 10	0.0 10 00	515.2 (0 555.2	Chrostil A I	105
V organol	СЧ	chlaraform	$408 \pm 410$	up to 17	202 to 252		121
	C ₃ 11 ₈	ciliorororini	408 to 410	up to 17	303 10 333	D	121
oxymatrine			480 to 481	11 to 21	308.2 to 328.2	Dartie	122
oxymatrine			480 to 481	30	328.2	—	123
oxymatrine	$H_2O + CO_2$		480 to 481	30	328.2	-	123
oxymatrine + PFPE-NH ₄ $^{\circ}$	$CO_2$		—	30	328.2	_	123
oxymatrine + PFPE-NH ₄ e	$H_2O + CO_2$		—	15 to 23	308.2 to 328.2	_	123
paclitaxel	CO ₂		213 to 217	10 to 30	308 to 328	-	41
patchoulol	CO ₂		328 to 333	10 to 25	313 to 323	-	128
phenacetin	CO ₂		407	9 to 19	308 to 328	PR EOS, M-S-T	129
2-(phenoxy)acetic acid	$CO_2$		371.65	11.75 to 22.43	308.2 to 328.2	Chrastil, M-S-T, PR	81
						EOS, SRK EOS	
2-phenyl-4H-1,3-benzoxazin-4-one	$CO_2$		123 to 125	10 to 30	308 to 328	_	51
phenylbutazone	$CO_2$		378.58	10 to 22	308.2 to 328.2	Chrastil, M-S-T, solution	115
	_					model	
phytosterol	CO		411.5	14.33 to 31.19	323 to 343	_	59
pindolol	CO		440 to 444	8 to 27.5	298 to 318	_	40
p-pipitol	CO.		452 to 458	10  to  40	313 to 333	SRK EOS. GC EOS	130
piperipe	CO2		192 to 198	10 to 20	203 to 333	Chrastil dilute solution	131
piperine	002		101 10 100	10 10 20	275 10 555	model	151
	60		406.11	um to 10	202 10 260		122
progesterone			400.11	up to 10	283 10 308	PR EOS	132
progesterone	$C_3H_8$		406.11	up to 10	283 to 308	PR EOS	132
progesterone	$C_4H_{10}$		406.11	up to 10	283 to 368	PREOS	132
L-proline	RI34a		501 (dec.)	5 to 25	288 to 328	_	111
L-proline	$CO_2$		501 (dec.")	10 to 36	308 to 332	-	111
propranolol	$CO_2$		solid, n.a. ^g	8 to 27.5	298 to 318	_	40
propyl <i>p</i> -hydroxybenzoate	CO ₂		370.2	8.0 to 23.0	308.2 to 328.2	Chrastil	133
propyl <i>p</i> -hydroxybenzoate	CO ₂	cyclohexane	370.2	8.0 to 23.0	308.2	Chrastil-cosolvent	133
propyl <i>p</i> -hydroxybenzoate	CO ₂	cyclohexane +	370.2	8.0 to 23.0	308.2	Chrastil-cosolvent	133
		acetone					
propyl <i>p</i> -hydroxybenzoate	CO ₂	acetone	370.2	8.0 to 23.0	308.2	Chrastil-cosolvent	133
puerarin	$CO_2$	ethanol	460.2 to 462.2	2 to 20	308 to 328	-	134
pyrazine	CO ₂		325.2	up to 20	298 to 373	PR EOS	44
quercetin-3-glucoside	CO ₂	ethanol + water	solid, n.a. ^g	15, 19	313	_	78
resveratrol	CO	ethanol + water	526 to 528	15, 19	313	_	78
rosuvastatin	CO ₂		435.0	12.16 to 35.46	308 to 348	Chrastil, Bartle, K-I, M-S-T	56
rp70 (hardened rapeseed oil)	CO.		na ^g	3 15 to 30 78	333 to 367	_	104
rp70 (hardened rapeseed oil)	С Ч		n 2 ^g	0.00 +0.7 19	328 to 262		104
1P/0 (naturneu tapeseeu on)	C3118		11.d.	0.77 10 /.10	520 10 505		104

			$P_{\rm min}/{\rm MPa}$ to	$T_{\rm min}/{\rm K}$ to		
S	С	$t_{\rm fus}/{ m k}^{~a}$	$P_{\rm max}/{\rm MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref.
$CO_2$		408.0 to	12.16 to 35.46	308 to 348 K	Chrastil, Bartle, K-J, M-S-T	56
		411.0				
$CO_2$	$DCM^{f}$	408.0 to 411.0	6.4 to 45	303.3 to 333.3	-	110
$CO_2$	ethanol + water	407.2	10 to 30	333 to 373	SRK EOS	98
$CO_2$		327.6	9.9 to 22.7	308 to 318	PR EOS	109
$CO_2$	ethanol	327.6	9.9 to 22.7	308 to 318	PR EOS	109
$CO_2$	isoamyl alcohol	327.6	9.9 to 22.7	308 to 318	PR EOS	109
$CO_2$		solid, n.a. ^g	13.2 to 25.1	315 to 345	PR EOS	136
$CO_2$		343.2 to 353.2	10 to 30	318 to 338	Chrastil	96
$CO_2$	ethanol	545	10	309.2	-	48
$CO_2$	ethanol + $DCM^{f}$	545	10	309.2	_	48
$CO_2$		544.2 to 546.2	10 to 44	313 to 333	M-S-T	137
$CO_2$		186 to 188	10 to 30	308 to 328	-	41
$CO_2$		349 to 350	15.0 to 30.0	313 to 323	M-S-T	138
$CO_2$		527 to 529	10 to 40	313.2 to 333.2	PR EOS, QLF EOS	83
$CO_2$		380.7	9.34 to 22.6	308.2 to 323.2	PR EOS	140
$CO_2$		376.8	9.41 to 22.54	308.2 to 323.2	PR EOS	140
$CO_2$		497.3	9.68 to 22.44	308.2 to 323.2	PR EOS	140
$CO_2$	ethanol	524 to 528	10 to 40	313.2 to 333.2	SRK EOS, GCA EOS	100
$CO_2$		337 to 339	3.24 to 24.75	336 to 363	PR EOS	104
$CO_2$		>573	15 to 40	308 to 338	Chrastil, Chrastil-W	141
$CO_2$		406 to 408	10 to 30	313 to 353	PR EOS	142
$CO_2$	ethanol	406 to 408	15, 30	313 to 333	PR EOS	142
CO2		355.5	8 to 27.65	313.2 to 353.2	PR EOS	93
R23		355.5	3.13 to 20.25	313.2 to 333.2	Chrastil	94
R134a		355.5	1.9 to 20.58	313.2 to 333.2	Chrastil	94
R236fa		355.5	1.18 to 20.5	313.2 to 333.2	Chrastil	94
$CO_2$		313.6	7.83 to 30.37	313.2 to 353.2	PR EOS	93
R23		313.6	2.4 to 25.2	313.2 to 333.2	Chrastil	94
R134a		313.6	5.2 to 24.6	313.2 to 333.2	Chrastil	94
R236fa		313.6	7.9 to 26.3	313.2 to 333.2	Chrastil	94
	S CO ₂ CO ₂ RI34a RI34a RI34a R236fa	SC $CO_2$ $DCM^f$ $CO_2$ ethanol + water $CO_2$ ethanol $CO_2$ $CO_2$ $CO_2$ $CO_2$ $CO_2$ $CO_2$ $CO_2$ ethanol $CO_2$ $CO_2$ $CO_2$ ethanol $CO_2$ $CO_2$ $CO_2$ ethanol $CO_2$ $CO_2$ $CO_2$ ethanol $CO_2$ $CO_2$ $R134a$ $R134a$ $R134a$ $R134a$ $R236fa$ $I$ $I134a$ $I$ $R134a$ $I$ $R134a$ $I$ $R134a$ $I$	S       C $t_{fus}/k^a$ CO2       408.0 to         411.0         CO2       DCM ^f 408.0 to 411.0         CO2       ethanol + water       407.2         CO2       ethanol - water       327.6         CO2       ethanol       327.6         CO2       ethanol       327.6         CO2       ethanol       327.6         CO2       isoamyl alcohol       327.6         CO2       ethanol       545         CO2       ethanol + DCM ^f 545         CO2       ethanol + DCM ^f 545         CO2       ethanol + DCM ^f 545         CO2       380.7       529         CO2       380.7       529         CO2       376.8       529         CO2       376.8       524         CO2       337 to 339       50         CO2       2573       53         CO2       406 to 408       55         R23       355.5       355.5         R134a       355.5       55         R23       313.6       313.6         R134a       313.6       313.6         R134	SC $t_{tus}/k^a$ $P_{max}/MPa$ CO2DCM f408.0 to12.16 to 35.46411.0411.06.4 to 45CO2DCM f408.0 to 411.06.4 to 45CO2ethanol + water407.210 to 30CO2ethanol327.69.9 to 22.7CO2isoamyl alcohol327.69.9 to 22.7CO2isoamyl alcohol327.69.9 to 22.7CO2ethanol327.69.9 to 22.7CO2isoamyl alcohol327.610.0CO2ethanol54510CO2ethanol54510CO2ethanol + DCM f54510CO2ethanol + DCM f54510 to 30CO2ethanol + DCM f54510 to 30CO2380.79.34 to 22.6CO2376.89.41 to 22.54CO2376.89.41 to 22.54CO2406 to 40810 to 30CO2athanol524 to 52810 to 40CO2ethanol524 to 52810 to 40CO2athanol524 to 52810 to 40CO2ethanol524 to 52810 to 30CO2ethanol525.58 to 27.65R23355.51.13 to 20.25R134a355.51.18 to 20.58R236fa313.67.83 to 30.37R23313.65.2 to 24.6R236fa313.67.9 to 26.3	S         C         trun/K a         Pmax/MPa         Tmax/K           CO2         408.0 to 411.0         12.16 to 35.46         308 to 348 K           CO2         DCM ^f 408.0 to 411.0         6.4 to 45         303.3 to 333.3           CO2         ethanol + water         407.2         10 to 30         333 to 373           CO2         ethanol + water         407.2         10 to 30         333 to 373           CO2         ethanol 327.6         9.9 to 22.7         308 to 318           CO2         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318           CO2         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318           CO2         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318           CO2         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318           CO2         ethanol         545.5         10         309.2           CO2         ethanol         545         10         309.2           CO2         ethanol + DCM ^f 545         10 to 30         313 to 333           CO2         527 to 529         10 to 40         313.2 to 332.2           CO2         376.8	S         C $t_{fiss}/k^a$ $P_{max}/MPa$ $T_{max}/K$ correlation model           CO         408.0 to         12.16 to 35.46         308 to 348 K         Chrastil, Bartle, K-J, M-S-T           H11.0         -         411.0         -         -           CO         perform         408.0 to 411.0         6.4 to 45         303.3 to 333.3         -           CO         ethanol + water         407.2         10 to 30         333 to 373         SRK EOS           CO         ethanol         327.6         9.9 to 22.7         308 to 318         PR EOS           CO         ethanol         327.6         9.9 to 22.7         308 to 318         PR EOS           CO         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318         PR EOS           CO         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318         PR EOS           CO         isoamyl alcohol         327.6         9.9 to 22.7         308 to 318         PR EOS           CO         ethanol         545         10         309.2         -           CO         ethanol         545         10 to 30         308 to 328         -           CO         ethano

^{*a*} T_{fus}: melting temperature of compound X. ^{*b*} PLA: polylactic acid. ^{*c*} DH-PDC: 1,4-dihydro-2,6-dimethyl-4-(1-methyl-5-nitroimidazol-2-yl)-3,5pyridinedicarboxylate. ^{*d*} PLGA: poly(lactide-*co*-glycolide). ^{*c*} PFPE-NH₄: ammonium carboxylate perfluoropolyether. ^{*f*} DCM: dichloromethane. ^{*g*} n.a.: data not available. ^{*h*} dec.: decomposes.

nonfluorinated compounds. The results obtained can represent the tendency of solubility enhancement by fluorination.¹⁴⁰

**2.4. Aromatic Compounds.** Aromatic compounds that are not included in the previous group are summarized in Table 5. These include bipyridine derivatives and hydroxyquinoline derivatives used as chelating agents, anthraquinone-type disperse dyes, photochromic dyes, disperze azo dyes, polar acid dyes, pesticides, polycyclic aromatic hydrocarbons (PAHs), substituted phenols, etc.

The most commonly used SC solvent for these compounds was  $CO_2$ , but the solvent power of propane, water, and HFCs was also investigated. Investigations of the solubility of PAHs in propane indicated excellent solvent properties of propane for the extraction of polyaromatics in comparison with SC  $CO_2$ .¹⁴⁹ The values of the mole fraction of anthracene in propane are 2 orders of magnitude higher than those reported in the literature for anthracene in  $CO_2$ .¹⁴⁹

The solubilities of two different bisphenol compounds [2,2bis(4-hydroxyphenyl)propane (bisphenol A) and 2,2-bis(4-hydroxyphenyl)hexafluoropropane (bisphenol AF)] in three SCFs (CO₂, R152a, and R134a) were investigated by Liu et al.,¹⁵⁶ and the influence of the fluorine content of the solute or solvent on the solubility was studied. The results demonstrated that even a modest amount of fluorine substitution for hydrogen has a significant impact on the solubility levels of compounds.  $CO_2$  is a poor solvent for bisphenol A and a modest solvent for bisphenol AF. This is in agreement with previous studies showing that fluorinated compounds, relative to their hydrocarbon analogues, have higher solubilities in  $CO_2$ .¹⁵⁶ The comparison of the two HFC solvents used in this study showed once again that fluorine substitution has a significant impact on the strength of solvents that have the same polarizability and dipole moment. R152a showed a greater solvent power than R134a because of the differences in molar volumes and the distances of fluorine and hydrogen separation in these two solvents.¹⁵⁶

The solubilities of a variety of unsaturated carboxylic acids in SC R134a were determined by Abbott et al.,¹⁴⁴ who demonstrated that polar solutes have much higher solubilities in R134a than in  $CO_2$  and that the energy requirements needed to obtain similar solubilities in pure  $CO_2$  are over an order of magnitude higher than those for the R134a system.

A promising application of SCFs that has been developed in recent years because of environmental problems and economic considerations is a new attractive dyeing method with SCFs. The

# Table 5. Solubilities of Other Aromatic Compounds (X) in Solvents (S) + Cosolvents (C)

Х	S	С	$T_{\rm fus}/{ m K}^a$	P _{min} ∕MPa to P _{max} ∕MPa	$T_{ m min}/ m K$ to $T_{ m max}/ m K$	correlation model	ref
acenaphthene	$H_2O$		365 to 368	5 to 10	323 to 573	_	143
α-acetamidocinnamic acid	R134a		467	5 to 20	378	PR EOS	144
Acid Red 57 + hexadecyltri- methylammonium bromide	$CO_2$	methanol	solid, n.a. ^d	25 to 32.5	308 to 348	Bartle	145
Acid Red 57 + dodecyl-	$CO_2$	methanol	solid, n.a. ^d	25 to 32.5	318 to 373	Bartle	146
trimetnyiammonium bromide			202.2	-	212.2 ( 2/2.2		1.45
actidine	$H_2O$		383.2	5 11.7 to 20.1	313.2 to 303.2	_	14/
anthracene	СU ₂		489.7	4.7 to 11.3	318.2	DD FOS	140
anthracene	U3118		487 to 489	5 to 10	273 to 573	-	142
anthracene	H 0		487 to 489	4 to 8	323 to 373	solubility vs. T. modol	145
anthracene $\pm$ phenanthrene $\pm$ carbazole	CO.		-	11.1 to 20.1	308 2 to 318 2	_	148
anthracene oil	CO.		n a ^d	15.1 to 20.1	308.2 to 318.2	_	148
9.10-anthraquinone	H ₂ O		558.0	5	313.2 to 433.2	solubility-ys-T model	151
anthrone	H ₂ O		428.2	5	313.2 to 423.2	solubility-vs-T model	151
1.2-benzanthracene	H ₂ O		430 to 432	4 to 8	313 to 423	solubility-vs-T model	150
hiphenyl	CO2		342 to 345	10 to 30	353 to 383	_	152
bis(2-(2-butoxyethoxy)ethyl)-2.2-	CO2		312.2 to 313.2	10.4 to 18.8	313 to 333	Bartle	153
bipyridine-4,4-dicarboxylate	002		512.2 (0 515.2	10.1 10 10.0	515 10 555	Durie	155
bis(2-butoxyethyl)-2,2-bipyridine-4,4- dicarboxylate	$CO_2$		314.2 to 315.2	10.4 to 18.8	313 to 333	Bartle	153
1,4-bis(butylamino)-9,10- anthraquinone	CO ₂		392	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A, M-S-T	154
1,4-bis(dodecylamino)-9,10-	$CO_2$		352	10 to 30	310 to 340	Carnahan—Starling—van der Waals EOS	155
1,4-bis(dodecylamino)-9,10-	$N_2O$		352	7.6 to 12.7	310 to 330	Carnahan—Starling—van der	155
bis(2-(2-ethoxyethoxy)ethyl)-2,2-	CO ₂		340.2 to 341.2	10.4 to 18.8	313 to 333	Bartle	153
bipyridine-4,4-dicarboxylate 1,4-bis(ethylamino)-9,10-anthraquinone	CO ₂		468.5	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle,	154
1,4-bis(hexadecylamino)-9,10-	CO ₂		366.5	15 to 180	320 to 340	dv-A, M-S-1 Carnahan—Starling—van der	155
anthraquinone 1,4-bis(hexadecylamino)-9,10-	$N_2O$		366.5	10 to 160	310 to 330	Waals EOS Carnahan—Starling—van der	155
anthraquinone 2,2-bis(4-hydroxyphenyl)	R152a		435.2	up to 15	343 to 453	Waals EOS —	156
hexafluoropropane	D124		125.2	10 / 20	402 4 452		156
hexafluoropropane	K134a		435.2	10 to 20	403 to 453	_	156
2,2-bis(4-hydroxyphenyl) hexafluoropropane	CO ₂		435.2	up to 200	303 to 413	_	156
2,2-bis(4-hydroxyphenyl) propane	R152a		431.2	up to 65	378 to 453	-	156
2,2-bis(4-hydroxyphenyl) propane	R134a		431.2	65	473	-	156
2,2-bis(4-hydroxyphenyl) propane	$CO_2$		431.2	200	473	-	156
1,4-bis(methylamino)-9,10- anthraquinone	CO ₂		493	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A, M-S-T	154
1,4-bis(1-methyl ethylamino)-9,10- anthraguinone	CO ₂		443.5	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A. M-S-T	154
1,4-bis(octylamino)-9,10-anthraquinone	CO ₂		349	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A, M-S-T	154
1,4-bis(pentylamino)-9,10- anthraquinone	CO ₂		389	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A, M-S-T	154
anthraquinone	CO ₂		406	4.6 to 20	299 to 346	Chrastil, Chrastil-S-S, Bartle, dV-A, M-S-T	154
2.2-bis( <i>n</i> -tolvl) hexafluoropropane	CO		357.3	5.62 to 25.1	293.9 to 382.4	_	157
2.2-bis( <i>p</i> -tolvl) hexafluoropropane	R134a		357.3	0.58 to 8.71	295.2 to 447.7	_	157
2.2-bis( <i>p</i> -tolvl) hexafluoropropane	R152a		357.3	0.58 to 8.71	294.9 to 447.9	_	157
2,2-bis( <i>p</i> -tolyl)propane	CO		351.8	14.41 to 71.61	304.3 to 373.7	_	157
2,2-bis( <i>p</i> -tolyl)propane	R134a		351.8	1.93 to 12.19	336.4 to 448.7	-	157
2,2-bis( <i>p</i> -tolyl)propane	R152a		351.8	0.43 to 9.38	294.8 to 448.6	_	157
bitumen	Toluene		n.a. ^d	4.5 to 14.5	603.2 to 633.2	Chrastil	158

				$P_{\rm min}/{ m MPa}$	$T_{\rm min}/{ m K}$ to		
Х	S	С	$T_{\rm fus}/{ m K}^a$	to $P_{\rm max}/{ m MPa}$	$T_{\rm max}/{\rm K}$	correlation model	ref
bitumen	Methanol		n.a. ^d	6.5 to 22.5	553.2 to 623.2	Chrastil	158
<i>p</i> -bromobenzaldehyde	CO ₂		334.2	9 to 13.5	303 to 333	PR EOS	159
carbazole	CO ₂		519.5	10.1 to 20.1	318.2	_	148
carbazole	H ₂ O		519.5	5	313.2 to 433.2	_	147
carbonylhydridotris[tris-	CO2		solid, n a ^d	9 to 11.9	320 to 333	Chrastil	160
( <i>n</i> -trifluoromethylphenyl)	002		sondy mar	,	020 10 000	Children	100
nhosnhine]rhodium							
phosphilic Jinodium	CO.		solid na ^d	99 to 169	333	Chrastil	160
carbonylbydridatric	$CO_2$		30iid, ii.a.	).) (0 10.)	555	Cillasti	100
(trial and the archine)							
(triphenyiphosphine)							
rhodium	60		212 / 210	0.0.4 15.4	200 / 212		1/2
4-chlorophenol	$CO_2$		313 to 318	8.8 to 15.6	308 to 313	Chrastil, M-S-1	162
4-chlorophenol	CO ₂	methanol	313 to 318	8.8 to 15.6	313	Chrastil-G, M-S-1-cosolvent	162
4-chlorophenol	CO ₂	acetone	313 to 318	8.8 to 15.6	313	Chrastil-G, M-S-1-cosolvent	162
4,4-diaminodiphenylmethane	CO ₂		367.7	11 to 20	313.2 to 333.2	PR EOS, Chrastil, M-S-T	161
dibenzoturan	$CO_2$		355	6.5 to 27.5	301.3 to 338.2	Chrastil, PR EOS	163
dibenzofuran	$CO_2$	methanol	355	9.3 to 20.6	318.2 to 338.2	Pérez	164
dibenzofuran	$CO_2$	acetic acid	355	10.3 to 20.5	318.2 to 338.2	Pérez	164
dibenzofuran	$H_2O$		355.3	5	313.2 to 353.2	—	147
dibenzothiophene	$H_2O$		371.8	5	313.2 to 363.2	—	147
2,4-dichlorophenol	CO ₂		315 to 316	8.8 to 15.6	308 to 313	Chrastil, M-S-T	162
2,4-dichlorophenol	$CO_2$	methanol	315 to 316	8.8 to 15.6	313	Chrastil-G, M-S-T-cosolvent	162
2,4-dichlorophenol	$CO_2$	acetone	315 to 316	8.8 to 15.6	313	Chrastil-G, M-S-T-cosolvent	162
dicofol	CO ₂		344.4	10 to 25	293.2 to 313.2	K-J, Chrastil	165
1,3-dihydro-3,3-dimethyl-1-isopropyl-6-	CO ₂		450.2 to 452.2	10 to 26	308 to 328	Chrastil, Bartle, M-S-T, Z-E,	166
(2,3-dihydroindole-1-yl)spiro[2H-						PR EOS, SRK EOS	
indole-2,							
3-3 <i>H</i> -naphtho[2,1- <i>b</i> ] [1,4] oxazine							
1,4-dihydroxy-9,10-anthraquinone	CO ₂		471.2 to 472.2	15.2 to 35.5	308 to 348	PR EOS	167
1,4-dihydroxy-2-(prop-2-enyl)-9,10-	$CO_2$		412.2 to 413.2	15.2 to 35.5	308 to 348	PR EOS	167
anthraquinone							
9,10-dimethylanthracene	H ₂ O		455.2 to 457.2	5	313.2 to 448.2	solubility-vs-T model	168
4,6-dimethyldibenzothiophene	H ₂ O		426 to 430	5	313.2 to 423.2	- '	147
2.5-dimethyl phenol	CO ₂		348 to 350	10.1 to 28	308	_	169
2.3-dimethyl phenol	CO ₂		346 to 348	10.1 to 28	308	_	169
1.4-dinethoxy-9.10-anthraquinone	CO ₂		493.2 to 496.2	15.2 to 35.5	308 to 348	PR EOS	167
Disperse Blue 56	CO		453.4	15 to 30	353 2 to 393 2	Chrastil, M-S-T	171
Disperse Blue 56	CO2	ethanol	453.4	15 to 30	353 2 to 393 2	Chrastil M-S-T	171
Disperse Blue 56	CO.	DMSO ^c	453.4	20 to 30	353.2 10 373.2	Chrostil M-S-T	171
Disperse Blue 79		athanal	412	16 to 24 1	353 to 202	PR EOS Chrostil C Forri	172
Disperse blue / 9	$CO_2$	ethallol	415	10 to 24.1	555 10 595	density-based	1/2
Disporsa Blue 182	CO		solid no ^d	12 to 28	2/2 2 to 282 2	Chrostil M S T	170
Disperse Dire 103	$CO_2$	mathanal	168	12 to 20	252 to 202	Chrastil K I Bartla M S T	173
Disperse Orange 3	$CO_2$	athanal	468	16 to 29	252 to 202	DR EOS Chrostil C Forri	173
Disperse Ofange 5	$CO_2$	ethalioi	408	10 10 28	333 10 393	r EOS, Chiasti-G, Feili	1/2
Distration Red 60	<u> </u>		460	11 4- 22	252 4- 202	Dentle	174
Disperse Red 60			460	11 to 23	353 to 393	Bartle	1/4
Disperse Red 60			400	10 to 30	333.2 to 393.2	MF-NLF EOS	175
Disperse Red 73	CO ₂		solid, n.a.	12 to 28	343.2 to 383.2	Chrastil, M-S-1	170
Disperse Red 73	CO ₂		solid, n.a."	12 to 28	343 to 383	Chrastil, M-S-1	176
Disperse Red $73 + \text{Disperse Blue 183}$	CO ₂		_	12 to 28	343.2 to 383.2	Chrastil, M-S-1	170
Disperse Red $73 + D$ isperse Yellow 119	CO ₂		-	12 to 28	343 to 383	Chrastil, M-S-T	176
Disperse Violet 1	$CO_2$		516.3	15 to 30	353.2 to 393.2	Chrastil, M-S-T	177
Disperse Violet 1	CO ₂	ethanol	516.3	15 to 30	353.2 to 393.2	Chrastil, M-S-T	177
Disperse Violet 1	CO ₂	DMSO	516.3	20 to 30	353.2	Chrastil, M-S-T	177
Disperse Yellow 54	$CO_2$		533	15 to 30	353.2 to 393.2	Chrastil, M-S-T	179
Disperse Yellow 54	CO ₂	ethanol	533	15 to 30	353.2 to 393.2	Chrastil, M-S-T	179
Disperse Yellow 54	$CO_2$	DMSO ^c	533	20 to 30	353.2	Chrastil, M-S-T	179
Disperse Yellow 54	$CO_2$		543	10 to 30	333.2 to 393.2	MF-NLF EOS	175
Disperse Yellow 119	$CO_2$		solid, n.a. ^d	12 to 28	343 to 383	Chrastil, M-S-T	176
Disperse Yellow 184	$CO_2$		481 to 483	12.1 to 35.5	308 to 348	Chrastil, K-J, Bartle, M-S-T	178
Disperse Yellow 184-modified	CO ₂		492 to 494	12.1 to 35.5	308 to 348	Chrastil, K-J, Bartle, M-S-T	178

## Journal of Chemical & Engineering Data

				$P_{\rm min}/{ m MPa}$	$T_{\rm min}/{\rm K}$ to		
Х	S	С	$T_{\rm fus}/{ m K}^a$	to $P_{\rm max}/{ m MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref
Disperse Yellow 232	$CO_2$		467 to 469	12.1 to 35.5	308 to 348	Chrastil, K-J, Bartle, M-S-T	178
Disperse Yellow 232-modified	CO ₂		498 to 500	12.1 to 35.5	308 to 348	Chrastil, K-J, Bartle, M-S-T	178
disperse dye: $6-\{(E)-$	$CO_2$		555 to 556	12.2 to 35.5	308 to 348	Chrastil	180
2-[4-(diethylamino)phenyl]-							
1-diazenyl}-2-propyl-1 <i>H</i> -							
benzo[ <i>de</i> ]isoquinoline-1,3(2 <i>H</i> )-							
dione							
disperse dye: ethyl 2- $[6-{(E)}-$	$CO_2$		568 to 569	12.2 to 35.5	308 to 348	Chrastil	180
2-[4-(diethylamino)-							
2-methylphenyl]-1-diazenyl}-1,3-							
dioxo-1 <i>H</i> -benzo[ <i>de</i> ]							
isoquinolin-2(3H)-yl] acetate							
disperse dye: ethyl 2- $[6-{(E)-2-}$	CO ₂		650 to 651	12.2 to 35.5	308 to 348	Chrastil	180
[3-hydroxy-2-naphthyl]-1-diazenyl}-							
1,3-dioxo-1 <i>H</i> -benzo[ <i>de</i> ]isoquinolin-							
2(3H)-yl] acetate							
1-hydroxy-9,10-anthraquinone	CO ₂		457.2 to 459.2	15.2 to 35.5	308 to 348	PREOS	167
2-hydroxy-1-[4-(2-	$CO_2$		362.2 to 393.2	10 to 26	308.2 to 328.2	Chrastil, Bartle, M-S-T,	181
hydroxyethoxy)phenyl]-2-methyl-1-						PREOS	
propanone							
(Irgacure 2959)	CO		400.2 to 401.2	15 2 to 25 5	209 + 249	DD EOS	167
anthraquinone	$CO_2$		400.2 10 401.2	15.2 10 55.5	508 10 548	TRE05	107
6-methoxy-1-tetralone	R134a		351	5 to 20	378	PR EOS	144
2-methylanthracene	H ₂ O		477.2 to 479.2	5	313.2 to 453.2	solubility-ys-T model	168
<i>p</i> -methylbenzene sulfonic acid	$CO_2$		solid, n.a. ^d	8 to 21	308 to 328	Chrastil	182
<i>p</i> -methylbenzene sulfonic acid	$CO_2$	ethyl acetate	solid, n.a. ^d	8 to 21	308	Chrastil-cosolvent	182
p-methylbenzene sulfonic acid	$CO_2$	ethyl acetate $+$	solid, n.a. ^d	8 to 21	308	Chrastil-cosolvent	182
		ethanol					
<i>p</i> -methylbenzene sulfonic acid	CO ₂	ethanol	solid, n.a. ^d	8 to 21	308	Chrastil-cosolvent	182
<i>p</i> -methylbenzene sulfonic acid	$CO_2$	acetone	solid, n.a. ^a	8 to 21	308	Chrastil-cosolvent	182
2-methyl-N-phenylacetamide	CO ₂		383.2	10 to 22	308.2 to 328.2	PR EOS, SRK EOS, Chrastil,	183
	60		101 5	10 / 22	200.2 / 220.2	M-S-T	102
4-methyl- <i>IN</i> -phenylacetamide	$CO_2$		421.7	10 to 22	308.2 to 328.2	PR EOS, SRK EOS, Chrastil,	183
1.5 paphthalapadiamina	CO		462.1	11 to 20	212.2 to 222.2	DD EOS Chrastil M S T	161
nanhthalene	CO2		353	10 to 20 5	313.1 to 328.1	M-S-T	184
naphthalene	$CO_2$		353	up to 20.6	372.5 to 430.7	SRK EOS	60
naphthalene	CO ₂		353	12 to 28	308	_	41
naphthalene	H ₂ O		350 to 355	4 to 8	313 to348	solubility-vs-T model	150
naphthalene + D,L-PLA b	CO ₂		_	7.5 to 10	313.15		54
naphthalene + L-PLA ^b	CO ₂		_	7.5 to 10	313.15	-	54
p-nitrobenzoic acid	$CO_2$		510 to 513	8 to 21	308 to 328	M-S-T	185
p-nitrobenzoic acid	CO ₂	cyclohexane	510 to 513	8 to 21	308 to 328	M-S-T-cosolvent	185
<i>p</i> -nitrobenzoic acid	$CO_2$	ethanol	510 to 513	8 to 21	308 to 328	M-S-T-cosolvent	185
<i>p</i> -nitrobenzoic acid	$CO_2$	cyclohexane +	510 to 513	8 to 21	308 to 328	M-S-T-cosolvent	185
		acetone					
<i>p</i> -nitrobenzoic acid	CO ₂	acetone	510 to 513	8 to 21	308 to 328	M-S-T-cosolvent	185
permethrin	CO ₂		319.5	10 to 25	293.2 to 313.2	K-J, Chrastil	165
phenanthrene	$CO_2$	acetone	3/1 to 3/3	1 to 12.5	295 to 350	-	186
phenanthrene	СО ₂ Н О		3/1 to 3/3	5	308.2	_	100
phenanthrene	$\Gamma_2 O$		372.4	3 10.1 to 20.1	318.2	_	148
phenanthrene	CO2		372	16 to 28	318	_	41
9,10-phenanthrenequinone	H ₂ O		482 to 485	5	313.2 to 473.2	solubility-vs-T model	151
phenanthridine	H ₂ O		379.9	5	313.2 to 363.2		147
- phenazine	$H_2O$		444.0	5	313.2 to 433.2	-	147
phenothiazine	$H_2O$		458.4	5	313.2 to 453.2	-	147
phenoxathiin	$H_2O$		328.8	5	313.2 to 328.2	_	147
phenoxazine	$H_2O$		429.9	5	313.2 to 413.2	_	147

				$P_{\rm min}/{ m MPa}$	$T_{\rm min}/{\rm K}$ to		
Х	S	С	$T_{\rm fus}/{ m K}^a$	to $P_{\rm max}/{\rm MPa}$	$T_{\rm max}/{ m K}$	correlation model	ref
N-phenylacetamide	CO ₂		387.5	10 to 22	308.2 to 328.2	PR EOS, SRK EOS, Chrastil, M-S-T	183
9-phenylanthracene	$H_2O$		426.2 to 428.2	5	313.2 to 423.2	solubility-vs-T model	168
phenylboric acid	$CO_2$		490 to 493	10 to 30	353 to 383	_	152
4-phenylphenol	CO ₂		439 to 440	10.1 to 28	308	_	169
4-phenylphenol + 2,3,5-trimethylphenol	$CO_2$		_	10.1 to 28	308	_	169
4-phenylphenol + 2,4,6-trimethylphenol	$CO_2$		_	10.1 to 24	308	_	169
4-phenyltoluene	$CO_2$		317 to 320	10 to 30	353 to 383	_	152
o-phthalic acid	$CO_2$		483.2 to 484.2	8 to 21	308.2 to 328.2	M-S-T	187
o-phthalic acid + $p$ -aminobenzoic acid	$CO_2$		_	8 to 21	308.2 to 328.2	M-S-T	187
1-(prop-2-enyloxy)-9,10-anthraquinone	$CO_2$		413.2	15.2 to 35.5	308 to 348	PR EOS	167
pyrene	$H_2O$		429	5 to 10	323 to 573	_	143
quinacridone	$H_2O$		663	24	453.4 to 592.9	Anderson	188
Solvent Brown 1	$CO_2$	methanol	427	16 to 24	353 to 393	Chrastil, K-J, Bartle, M-S-T	173
Solvent Brown 1	$CO_2$	ethanol	427	18 to 30.1	353 to 393	PR EOS, Chrastil-G, Ferri	172
						density-based	
sulfanilamide	$CO_2$		438.2	11 to 21	308 to 328	_	189
<i>p</i> -terphenyl	$H_2O$		485 to 486	4 to 8	313 to 483	solubility-vs-T model	150
4- <i>tert</i> -butyl phenol	$CO_2$		371 to 374	10.1 to 28	308	_	169
thianthrene	$H_2O$		429.6	5	313.2 to 423.2	_	147
thioxanthone	$H_2O$		487.9	5	313.2 to 473.2	solubility-vs-T model	151
<i>p</i> -toluenesulfonamide	CO ₂		411.2	11 to 21	308 to 328	_	189
<i>p</i> -toluenesulfonamide	$CO_2$	ethanol	411.2	11 to 21	308 to 328	_	189
p-toluenesulfonamide	$CO_2$		411.2	8.0 to 21.0	308 to 328	Chrastil	190
<i>p</i> -toluenesulfonamide	$CO_2$	ethanol	411.2	8.0 to 21.0	308 to 328	M-S-T-Sauceau	190
p-toluenesulfonamide	CO ₂	glycol	411.2	8.0 to 21.0	308	M-S-T-Sauceau	190
p-toluenesulfonamide $+$ sulfanilamide	$CO_2$		_	11 to 21	308 to 328	Chrastil, M-S-T	189
p-toluenesulfonamide $+$ sulfanilamide	$CO_2$	ethanol	_	11 to 21	308 to 328	Chrastil-G, M-S-T-Sauceau	189
2,4,6-trichlorophenol	$CO_2$	acetone	337 to 339	8.8 to 15.6	313	Chrastil-G, M-S-T-cosolvent	162
2,4,6-trichlorophenol	CO ₂		337 to 339	8.8 to 15.6	308 to 318	Chrastil, M-S-T	162
2,4,6-trichlorophenol	$CO_2$	methanol	337 to 339	8.8 to 15.6	313	Chrastil-G, M-S-T-cosolvent	162
2,3,5-trimethylphenol	$CO_2$		365 to 368	10.1 to 28	308	—	169
2,4,6-trimethylphenol	$CO_2$		341 to 344	10.1 to 28	308	—	169
triphenylene	$H_2O$		468 to 471	4 to 8	313 to 468	solubility-vs-T model	150
triphenylmethyl chloride	$CO_2$		382 to 386	15 to 40	308.2 to 338.2	Gordillo, Chrastil	191
triphenylphosphine	CO ₂		352 to 354	9 to 17.8	320 to 333	Chrastil	160
triphenyltin chloride	$CO_2$		376 to 379	15 to 30	308.2 to 338.2	Gordillo, Chrastil	191
triptycene	H ₂ O		\$25.2 to \$27.2	5	313.2 to \$13.2	solubility-vs-T model	168
tris( <i>p</i> -trifluoromethylphenyl)phosphine	CO ₂		343 to 348	9 to 13.9	320 to 333	Chrastil	160
1,3,5-tri- <i>tert</i> -butylbenzene	$CO_2$		343.2	up to 20	298 to 328	—	192
2,4,0-tri-tert-butyipnenoi	$CO_2$		378 10 403	0.7 to 00.9 8 to 24	208 2 to 228 2	DD EOS Chrockil	193
vanthana	H O		373.7	5 10 24	300.2 to 320.2	r K EO3, Ollastii solubilitu us T model	154, 193
vanthone	$\Gamma_2 O$		3/3./ 447.2	12 to 30	313.2 10 308.2	PR FOS Chrastil	104 105
vanthone	H ₂ O		434.1	5	313 2 to 433 2	solubility-ys-T model	151
	1120		10111	-	010.2 (0 700.2	seraenty to 1 model	1.51

^{*a*} *T*_{fus}: melting temperature of compound X. ^{*b*} PLA: polylactic acid. ^{*c*} DMSO: dimethyl sulfoxide. ^{*d*} n.a.: data not available.

SCF dyeing method has some advantages in comparison with conventional water-based dyeing: (1) the solubility of the dye can be controlled by pressure, allowing possible control of the dyeing strength and color; (2) contaminated wastewater streams are not produced; (3) washing and drying of the dyed fabric is not necessary; and (4) the SCF and the remaining dye in the cell of the solid textile can be reused after dyeing. Thus, the dyeing procedure is shorter than that for conventional methods.¹⁴⁵

Dyeing of textile fibers in SC  $CO_2$  has been limited to synthetic fibers using nonpolar disperse dyes, which are easily soluble in the SC  $CO_2$ , but the dyeing of natural fibers in this medium is still under development because of the low solubility of water-soluble polar dyes. In order to dye natural fibers, it is necessary to make such dyes soluble in SCFs. For this reason, the polar dyes are reacted with a hydrophobic ion-pairing reagent, after which they can be solubilized in SC  $CO_2$ .¹⁴⁵ Özcan and Özcan¹⁴⁵ measured the solubility of Acid Red 57 by ion-pairing with hexadecyltrimethylammonium (HDTMA) bromide and dodecyltrimethylammonium (DTMA) bromide¹⁴⁶ in SC CO₂. The results showed that Acid Red 57 is insoluble in SC CO₂ even with methanol as a cosolvent and that even the ion-pair forms of the acid dye (Acid Red 57–DTMA and –HDTMA) are essentially insoluble in SC CO₂ and require the addition of methanol as a cosolvent for measurable solubility to be achieved.

**2.5.** Nonaromatic Organic Compounds. Nonaromatic organic compounds that are not included in the group of biological and pharmaceutical compounds are summarized in Table 6; these include acyclic and cyclic compounds, such as keto acids, carboxylic acids, series of diglycolic acid esters, surfactants for microemulsions, diamondoid hydrocarbons, high-molecularmass *n*-alkanes, *n*-alcohols, and alcohol ethoxylates, etc. The

solvents used for these compounds were propane and HFCs in addition to  $CO_2$ .

Liu et al.¹⁸ measured the solubilities of a series of sodium bis(2ethylhexyl) sulfosuccinate analogue surfactants in SC CO₂ and SC R134a. The solubilities of these surfactants were much higher in R134a than in SC CO₂. The solubilities in SC CO₂ increased with increasing number of carbon atoms in the surfactant, whereas those in R134a decreased with increasing number of carbon atoms in the surfactant.¹⁸

Schwarz et al.¹⁹⁷ studied the phase equilibria of high-molecular-mass 1-alcohols in supercritical propane. It was observed that the hydroxyl group has the effect of increasing the phase-equilibrium pressure because of the difference in polarity, thus decreasing the solubility of the alcohols in propane relative to that of *n*-alkanes.¹⁹⁷

**2.6.** Polymers. The solubilities of polymers in  $CO_2$ , HFCs, DME, and hydrocarbons such as ethane and propane were measured at very high pressures up to 300 MPa (Table 7). The thermodynamic data for polymers in SCFs are important for the design of polymerization processes, fractionation, processing technologies, product development, and industrial applications.

SC CO₂ is a good solvent for many low-molecular-weight compounds and a few polymers, but it is generally a very poor solvent for high-molecular-weight polymers. However, its solubility in many polymers is substantial, being influenced by temperature, pressure, and weak interactions with the groups of the polymer. Dissolved CO₂ causes a reduction in the viscosity of the polymers by increasing their free volume. Thus, they are plasticized, allowing processing at lower temperatures. SC CO₂ has been used successfully as a polymerization medium and as a solvent, antisolvent, plasticizer, or blowing agent in polymer processing, including polymer modification, formation of polymer composites, polymer blending, microcellular foaming, and particle production.

However, it has been previously demonstrated that polymers possessing electron-donating functional groups display Lewis acid—base interactions in  $CO_2$  with carbonyls, acetates, and ethers, which significantly enhance the solubilities of the polymers in  $CO_2$ . Small sugar acetates are known to be extraordinarily  $CO_2$ -philic, and poly(vinyl acetate) (PVAc) is one of the most  $CO_2$ -soluble nonfluorous polymers identified to date.²²⁴

The solubility of an amorphous high-molecular-weight polymer with pendant sugar acetates [poly(1-O-(vinyloxy)ethyl-2,3,4,6-tetra-O-acetyl- $\beta$ -D-glucopyranoside), P(AcGIcVE)] in SC CO₂ was studied by Tapriyal et al.²²⁴ The solubility of this polymer in CO₂ was compared to the solubilities of PVAc and polylactic acid (PLA) in CO₂. The results showed that PVAc remains the most CO₂-soluble high-molecular-weight oxygenated hydrocarbon polymer identified to date, followed by P(AcGIcVE) and amorphous PLA.

In the work of Milanesio et al.,²²⁵ cloud points of binary mixtures of propane, diethyl ether (DEE), or DME with polybutadiene (PB) and mixtures of DEE with high-density polyethylene (PE) were experimentally determined. The temperature range studied was from (323 to 433) K for PB + DME and PB + propane and from (373 to 463) K for PB + DEE and PE + DEE. The results showed that in PB-containing binary systems, over the ranges of conditions of the experiments, the minimum pressure required to guarantee homogeneity at any temperature is below 20 MPa for DEE, below 30 MPa for DME, and on the order of 50 MPa for propane as the solvent.²²⁵ For the

PE + DEE system, a minimum pressure of about 24 MPa is needed in order to keep the system within a single phase.²²⁵

The *P*, *T* cloud-point curves of high-molecular-weight PE in hydrocarbons, halogenated hydrocarbons, oxygen-containing hydrocarbons, and their mixtures at high temperatures and high pressures were measured by Kojima et al.²²¹ In addition to the solvents included in Table 7, that study also examined the hydrocarbons butane, 2-methylbutane, 2,2-dimethylbutane, 2,2-dimethylbutane, 2-methylpentane, 2,3-dimethylbutane, 3-methylpentane, and heptane and the halogenated hydrocarbons chloroethane, 2-chloropropane, 2-chlorobutane, and dichloromethane. It was found that the cloud-point pressures of the solutions showed a good correlation with the critical temperatures of the solvents.²²¹

In the work of Galy et al.,²²⁶ the phase behavior of poly-(ethylene oxide)-*b*-poly(propylene oxide)-*b*-poly(ethylene oxide) triblock copolymers in liquid and SC CO₂ was studied by cloud-point measurements. The results showed that such trade hydrocarbonated surfactants are fairly soluble (0.001 mass fraction) in CO₂ under relatively mild conditions of temperature and pressure (T < 338 K, P < 30 MPa).

#### 3. MODELING

There are two major approaches to modeling solubilities in SCFs: equation of state (EOS) modeling and empirical densitybased correlations.¹⁵⁴ EOS modeling usually requires the selection of the most appropriate equation and mixing rules and also knowledge of pure-component parameters of the solute. Thus, solubility modeling by EOS is a challenging task. On the other hand, the use of empirical models does not require knowledge of additional solute properties and is therefore quite popular in chemical engineering, where such models have often been found to be very successful in correlating existing solubility data.

**3.1. Empirical Models.** The empirical models most often applied for modeling of the solubilities of solids in SCFs are summarized in Table 8.

The density-based models are based on the linear relationship between the logarithm of the solubility and the logarithm of the solvent density (or the solvent density itself) within a certain range of pressure and temperature. Generally, these models give good results for a solvent-density region from 10 MPa to approximately 30 MPa, where not only technical SCF processes usually operate but also most solubility data are collected.¹⁵⁴ Such a correlation is bound to fail for more extreme density regimes, such as when the solvent density becomes liquidlike under the experimental conditions.¹⁵⁴

The Chrastil,²²⁷ Kumar and Johnston (K-J),²³⁰ Bartle,²³¹ Mendez-Santiago and Teja (M-S-T),²³² and del Valle and Aguilera (dV-A)²³⁵ models and their modifications (see Table 8) relate the solubility of a solute (*j*) to the temperature and density of the SCF. Yu et al.²³⁶ and Gordillo et al.^{237,238} proposed equations that relate the solubility of the solute to the pressure and the temperature. In these models,  $\rho$ , *T* and *P* are the density of the SCF, temperature, and pressure, respectively,  $\gamma_j$  is the mass concentration of the solute,  $y_j$  is the mole fraction of the solute, and the  $a_i$  are the model constants. In the Bartle model,²³¹  $P_{ref}$  is the reference pressure (0.1 MPa) and  $\rho_{ref}$  is reference density (700 kg·m⁻³). In the Chrastil model,²²⁷  $a_1$  is an association number that

In the Chrastil model,²²⁷  $a_1$  is an association number that represents the average number of SCF molecules in the solvated complex. The constant  $a_0$  depends on the molecular weights of the solute  $(M_i)$  and supercritical fluid  $(M_{SCF})$ .

# Table 6. Solubilities of Nonaromatic Organic Compounds (X) in Solvents (S) + Cosolvents (C)

Х	S	С	$T_{\rm fus}/{ m K}^a$	$P_{\rm min}/{\rm MPa}$ to $P_{\rm max}/{\rm MPa}$	$T_{\rm min}/{\rm K}$ to $T_{\rm max}/{\rm K}$	correlation model	ref
adamantane	$H_2O$		482 to 485	5	313 to 493.2	_	196
bis(2,2,3,3,3-pentafluoropropyl) 2-sulfosuccinate sodium salt	CO ₂	water	511.9 to 512.9	12 to 25	308 to 338	_	198
bis(2,2,3,3,3-pentafluoropropyl) 2-sulfosuccinate sodium salt	R134a	water	511.9 to 512.9	up to 40	308 to 333	_	198
bis(2,2,3,4,4,4- hexafluorobutyl)	R134a	water	414.6 to 417.8	up to 40	308 to 343	_	198
z-sunosuccinate sodium san	D124a		244	5 to 20	279	DDEOS	144
crotonic acid	CO		344	5 to 20	378	FR E05	144
1 decenel	$CU_2$		278 to 280	3 10 20	378 to 108	_	144
diamontono			2/8 to $280$	5.7 10 0.70	3/8 to 408	_	19/
diamantane	П ₂ О С Ч		solid n.a.	$0.3 \pm 0.14$	313 to 493.2	_	190
diamontono			solid n a ^b	0.3 to 200	360 to 510 K	_	199
dibutul 2.2' ovidiacatata	$C_2 \Pi_6$		sond, n.a.	0.5 to 200	300 to 310	- Bartla Chrastil	200
dibutyl 2,2 - Oxidiacetate	D124a		aglid ma ^b	25	210		200
dibutyl-2-sulfosuccinate sodium salt	R134a		solid n.a.	25 10 to 20	310 308 to 338	_	10
dibutyl-2-sulfosuccinate sodium salt	CO		solid n a ^b	10 to 30	208 to 228	_	10
dibuty1-2-suitosuccinate socium sait	$CO_2$		sond, n.a.	0.2 to 15.2	212 +- 222	- Dentle Charactil	10
didecyi-2,2 -oxidiacetate	$CO_2$		312.4	9.3 to 15.2	313 to 333	Bartle, Chrastil	200
didodecyi-2,2 -oxidiacetate	$CO_2$		314./	9.2 to 14.5	313 to 333	Bartle, Chrastil	200
dineptyi-2,2 -oxidiacetate	$CO_2$		liquid	8./ to 14.1	313 to 333	Dartie	202
dineptyi-2,2 -oxidiacetate	$CO_2$			12.6 to 1/./	343 to 363	Bartle	203
dihexadecyl- $2,2'$ -oxidiacetate	$CO_2$		323.3	13.4 to 20.4	313 to 333	Bartle, Chrastil	200
dinexy1-2,2 -oxidiacetate			liquid	8.4 to 12.4	313 to 333	Bartle, Chrastil	200
dinexyl-2-sulfosuccinate sodium salt	R134a		solid, n.a.	25	318	_	201
dinexyl-2-sulfosuccinate sodium salt	K134a		solid, n.a.	10 to 30	308 to 338	_	18
dihexyl-2-sulfosuccinate sodium salt	CO ₂		solid, n.a.	10 to 30	308 to 338	-	18
dinonyl-2,2'-oxidiacetate	$CO_2$		liquid	9.1 to 14.2	313 to 333	Bartle	202
dinonyl-2,2 -oxidiacetate	CO ₂		liquid	13.6 to 19.7	343 to 363	Bartle	203
dioctyl-2,2'-oxidiacetate			liquid	8.8 to 13.7	313 to 333	Bartle, Chrastil	200
dioctyl-2-sulfosuccinate sodium salt	RI34a		solid, n.a. ^b	25	318	_	201
dioctyl-2-sulfosuccinate sodium salt	RI34a		solid, n.a.	30	318	_	18
dioctyl-2-sulfosuccinate sodium salt	CO ₂		solid, n.a.	30	318	-	18
dipentadecyl-2,2 -oxidiacetate	$CO_2$		solid, n.a.	11 to 19.3	313 to 333	Bartle	202
dipentyl-2,2 -oxidiacetate	$CO_2$		liquid	8.5 to 12.5	313 to 333	Bartle	202
dipentyl-2,2 -oxidiacetate			liquid	11.8 to 16.7	343 to 363	Bartle	203
dipentyl-2-sulfosuccinate sodium salt	R134a		solid, n.a.	16.5 to 33	308 to 338	-	201
dipentyl-2-sulfosuccinate sodium salt	R134a		solid, n.a.	30	318	-	18
dipentyl-2-sulfosuccinate sodium salt	$CO_2$		solid, n.a.	15 to 35	308 to 338	-	201
dipentyl-2-sulfosuccinate sodium salt	$CO_2$		solid, n.a.	30	318		18
ditetradecyl-2,2 -oxidiacetate	$CO_2$		320	10.3 to 16.9	313 to 333	Bartle, Chrastil	200
ditridecyi-2,2 -oxidiacetate	$CO_2$		solid, n.a.	9.9 to 15.0	313 to 333	Dartie Bartie	202
diundecyl-2,2 -oxidiacetate	$CO_2$		solid, n.a.	9.2 to 14.5	313 to 333	Bartle	202
diundecyl-2,2 -oxidiacetate	$CO_2$		solid, n.a.	13.7 to 18.1	343 to 363	Bartle	203
1-docosanol	$C_3H_8$		338 to 345	4.11 to 8.37	3/8 to 408	_	197
1-docosanoi	$C_3H_8$		338 to 345	4.11 to 8.3/	3/8 to 408	_	197
1-dodecanol	$C_3H_8$		295 to 299	3.51 to 0.89	378 to 408		197
<i>n</i> -eicosane	$C_3H_8$		308 to 310	0.84 to 2.19	287.33 to 333.45	PREOS	204
<i>n</i> -eicosane	$CO_2$		308 to 310	7.12 to 25.0	299.45 to 333.45	PREOS	204
ethanamide	$CO_2$		354.2	9 to 40	308.2 to 333.2	SRK EOS	205
ethyl myristate	$C_3H_8$		285	3.41 to 6.8	378 to 408	—	206
I-nexadecanol	C ₃ H ₈		322 to 323	4.04 to 7.58	3/8 to 408		197
itaconic acid	K134a		439	3 to 20	3/8 to 393	PK EOS	144
itaconic acid	CO ₂		439	5 to 20	3/8 292	DD FOC	144
itaconic acid + methylsuccinic acid	K134a		-	3 to 20	383	PK EUS	144
			303 to 306	8.0 to 19.0	313 to 342.4	Chrastil	207
ievulinic acia	$CO_2$	ethanol	303 to 306	8.0 to 19.0	513 to 342.4	Chrastil-G	207

Х	S	С	$T_{\rm fus}/{ m K}^a$	$P_{\rm min}/{\rm MPa}$ to $P_{\rm max}/{\rm MPa}$	$T_{\rm min}/{\rm K}$ to $T_{\rm max}/{\rm K}$	correlation model	ref
maleic acid	CO ₂		410 to 413	7 to 30	318 to 348.2	Chrastil, M-S-T	208
methylsuccinic acid	R134a		388	5 to 20	378 to 383	PR EOS	144
methyl tetradecanoate	$C_3H_8$		292	3.42 to 6.83	378 to 408	-	206
1-octadecanol	$C_3H_8$		331 to 334	3.92 to 7.66	378 to 408	-	197
2-propenamide	CO ₂		357.7	9 to 40	308.2 to 333.2	SRK EOS	205
tetradecane	$C_3H_8$		279	2.97 to 6.48	378 to 408	-	206
tetradecanoic acid	$C_3H_8$		326	3.87 to 8.48	378 to 408	-	206
tridodecylamine	CO ₂		289	8 to 40	308.1 to 328.1	Bartle, M-S-T	209
Unilin 550 alcohol	$C_3H_8$		372	3.46 to 13.88	378 to 408	-	210
Unithox 550 ethoxylate	$C_3H_8$		372	4.83 to 26.84	378 to 408	-	210
^{<i>a</i>} $T_{\text{fus}}$ : melting temperature of co	ompound X. ^b n.a	1.: data 1	not available.				

# Table 7. Solubilities of Polymers and Monomers (X) in SCFs (S) in Systems with or without Cosolvents (C)

					$P_{\rm min}/{ m MPa}$ to	$T_{\rm min}/{ m K}$ to	correlation	
Х	S	С	$T_{\rm fus}/{ m K}^a$	$M_{\rm w}/{ m kg} \cdot { m mol}^{-1 \ b}$	$P_{\rm max}/{\rm MPa}$	$T_{\rm max}/{ m K}$	model	ref
decyl acrylate	CO ₂		n.a. ^e	monomer	3.07 to 22.3	313 to 393	PR EOS	211
decyl methacrylate	CO ₂		229	monomer	3.27 to 23.1	313 to 393	PR EOS	211
isobutyl acrylate	CO ₂		213	monomer	2.4 to 14.8	313 to 393	PR EOS	212
isobutyl methacrylate	CO ₂		236	monomer	3.3 to 15.9	313 to 393	PR EOS	212
L-lactide	CO ₂		389 to	monomer	10 to 80	275 to 355	PR EOS	213
			392					
poloxamer F-127	CO ₂	ethanol	293 to	12.7	10	298	-	214
			333					
poly( $\epsilon$ -caprolactone)	R22		n.a. ^e	14	125	up to 413.2	-	215
poly( $\epsilon$ -caprolactone)	$R22 + CO_2$		n.a. ^e	14	2.7 to 125.5	323.3 to 415	_	215
poly( $\epsilon$ -caprolactone)	$DME^d + CO_2$		n.a. ^e	14	2.7 to 125.5	322.9 to 415	_	215
$poly(\epsilon$ -caprolactone)	CO ₂		n.a. ^e	14, 170	200 to 283	393 to 503	_	216
poly( $\epsilon$ -caprolactone)	R22		n.a. ^e	170	4.3 to 45.5	328 to 473	_	216
poly( $\epsilon$ -caprolactone)	$C_4H_8$		n.a. ^e	170	161 to 284	425 to 485	_	216
poly( $\epsilon$ -caprolactone)	$C_3H_6$		n.a. ^e	170	182 to 277	419 to 274	_	216
poly( $\epsilon$ -caprolactone)	CO ₂	$DME^{d}$	n.a. ^e	170	115 to 283	323 to 473	_	216
poly( $\epsilon$ -caprolactone)	CO ₂	R22	n.a. ^e	170	59 to 2 80	323 to 473	_	216
poly( $\epsilon$ -caprolactone)	$C_3H_6$	$DME^d$	n.a. ^e	170	92 to 270	323 to 473	_	216
$poly(\epsilon$ -caprolactone)	$C_3H_6$	R22	n.a. ^e	170	60 to 260	323 to 473	_	216
poly( $\epsilon$ -caprolactone)	$C_4H_8$	$DME^d$	n.a. ^e	170	32 to 254	313 to 473	_	216
$poly(\epsilon$ -caprolactone)	$C_4H_8$	R22	n.a. ^e	170	85 to 265	323 to 473	_	216
$poly(\epsilon$ -caprolactone)	$DME^{d}$		n.a. ^e	14, 170	14 to 50	328 to 473	_	216
poly( $\epsilon$ -caprolactone)	$CO_2 +$		n.a. ^e	n.a. ^e	up to 21	303 to 343	_	217
	dichlorometha	ne						
polycaprolactone	CO ₂	ethanol	303 to	1	10 to 25	310 to 330	PHSC EOS	218
			313					
poly(cylcohexene carbonate)	CO ₂		n.a. ^e	12	252 to 335	455 to 480	PC-SAFT	219
poly(cylcohexene carbonate)	CO ₂	cyclohexene oxid	de n.a. ^e	12, 25, 54	367 to 466	115 to 363	PC-SAFT	219
poly(decyl acrylate)	CO ₂		n.a. ^e	130	145 to 194	451 to 479	_	211
poly(decyl acrylate)	CO ₂	decyl acrylate	n.a. ^e	130	138 to 210	321 to 473	_	211
poly(decyl acrylate)	$C_3H_8$		n.a. ^e	130	16.9 to 28.6	332 to 454	-	211
poly(decyl acrylate)	$C_3H_6$		n.a. ^e	130	9.7 to 27.8	334 to 454	_	211
poly(decyl acrylate)	$C_4H_{10}$		n.a. ^e	130	1.9 to 14.3	354 to 455	-	211
poly(decyl acrylate)	$C_4H_8$		n.a. ^e	130	5.3 to 14	395 to 455	_	211
poly(decyl acrylate)	$DME^d$		n.a. ^e	130	4.4 to 17.8	374 to 455	-	211
poly(decyl methacrylate)	CO ₂	decyl methacryla	aten.a. ^e	100	11.7 to 233.3	314 to 458	_	211
polyethylene	$C_3H_8$		n.a. ^e	0.8, 7, 23.625,	5 to 50	360 to 390	_	220
				52, 59.3				
polyethylene	$C_2H_6$		n.a. ^e	0.8, 7, 23.625, 52, 59.3	30 to 140	370 to 425	_	220

					$P_{\rm min}/{ m MPa}$ to	$T_{\rm min}/{ m K}$ to	correlation	
Х	S	С	$T_{\rm fus}/{ m K}^a$	$M_{ m w}/ m kg\cdot mol^{-1}$ b	$P_{\rm max}/{ m MPa}$	$T_{\rm max}/{ m K}$	model	ref
polyethylene	$C_2H_4$		n.a. ^e	0.8, 7, 23.625, 52, 59.3	30 to 200	370 to 425	_	220
polyethylene	C5H12		n.a. ^e	102	10 to 23	440 to 510	_	221
polyethylene	R11		n.a. ^e	102	up to 20	440 to 510		221
polyethylene	C ₆ H ₁₄		n.a. ^e	102	up to 15	440 to 510		221
poly(isobutyl acrylate)	$CO_2$		n.a. ^e	120	91.5 to 182.2	324 to 423	_	212
poly(isobutyl acrylate)	$CO_2$	isobutyl acrylate	n.a. ^e	120	7 to 91.7	304 to 428	_	212
poly(isobutyl methacrylate)	$CO_2$		n.a. ^e	200	122 to 204.7	356 to 435	_	212
poly(isobutyl methacrylate)	CO ₂	isobutyl methacrylate	n.a. ^e	200	42 to 172.2	316 to 436	_	212
poly(L-lactide)	R22	,	n.a. ^e	80, 110, 230	3.6 to 26.1	332.3 to 410.8	_	215
poly(L-lactide)	R23		n.a. ^e	80, 110, 230	93.1 to 116	333.1 to 415.3	_	215
poly(L-lactide)	R32		n.a. ^e	80, 110, 230	77.0 to 111.3	334.6 to 416.8	_	215
poly(L-lactide)	R152a		n.a. ^e	80, 110, 230	53.2 to 64.2	352.9 to 415.2	_	215
poly(L-lactide)	$DME^d$		n.a. ^e	80, 110, 230	3.1 to 24.9	331.4 to 412.6	_	215
poly(L-lactide)	$R22 + CO_2$		n.a. ^e	2	3.6 to 44.1	314.2 to 395.7	_	215
poly(1-lactide)- PEG-poly(1-lactide) ^c	CO ₂	dichloromethane	n.a. ^e	n.a. ^e	up to 35	313.1 to 338.1	_	222
poly(L-lactide)- PEG-poly(L-lactide) ^c	CO ₂	dichloromethane + ethanol	n.a ^e	n.a. ^e	up to 35	313.1 to 338.1	_	222
polystyrene	$DME^d$		n.a. ^e	45	25.2 to 44	300.7 to 408.6	_	215
poly( <i>tert</i> -butyl acrylate)	$CO_2$		n.a. ^e	250	121.5 to 206.4	395 to 458	_	212
poly( <i>tert</i> -butyl acrylate)	$CO_2$	tert-butyl acrylate	n.a. ^e	250	18.2 to 179.1	319.7 to 425	_	212
poly( <i>tert</i> -butyl methacrylate)	$CO_2$		n.a. ^e	180	191.3 to 257.6	435 to 464	_	212
poly( <i>tert</i> -butyl methacrylate)	CO ₂	<i>tert</i> -butyl methacrylate	n.a. ^e	180	6.24 to 217.3	315 to 436	_	212
poly(tetrafluoroethylene)	CO ₂	·	n.a. ^e	n.a. ^e	10 to 70	318 to 383	Chrastil, Bartle, M-S-T	223
poly(1-O-(vinyloxy)ethyl- 2,3,4,6-tetra-O-acetyl- β-D-glucopyranoside	CO ₂		n.a. ^e	6, 20, 40	30 to 80	298	_	224
tert-butyl acrylate	CO ₂		204	monomer	2.4 to 14.0	313 to 393	PR EOS	212
tert-butyl methacrylate	CO ₂		213	monomer	3.3 to 14.7	313 to 393	PR EOS	212
$^{t}T_{\text{fus}}$ : melting temperature of	compound X. ^b N	í _w : molecular weigł	nt of polym	her investigated. ^{<i>c</i>} P	EG: poly(ethyler	ne glycol). ^d DM	E: dimethyl ether	. ^e n.a.:

data not available.

The constant  $a_2$  in the Chrastil and K-J models is related to total enthalpy change  $(\Delta H)$  as  $a_2 = \Delta H/R$ , where *R* is the gas constant;  $\Delta H$  is equal to the sum of the enthalpy of vaporization  $(\Delta_{vap}H)$  and the enthalpy of solvation  $(\Delta_{solv}H)$  of the solute, i.e.,  $\Delta H = \Delta_{vap}H + \Delta_{solv}H$ .

In the Bartle model, the parameter  $a_2$  can be directly used to estimate  $\Delta_{\text{vap}}H$  as  $\Delta_{\text{vap}}H = -a_2R$ . On the basis of the values of  $\Delta H$  and  $\Delta_{\text{vap}}H$ , the value of  $\Delta_{\text{sol}}H$  can be approximated for each solute-CO₂ system.

In the modification to the Chrastil model proposed by Garlapati and Madras,  $^{126} f^0$  is the fugacity of the gas, which was considered to be 1 atm.

Mendez-Santiago and Teja²³³ presented a semiempirical densitybased model for ternary cosolvent systems by adding a new parameter and the cosolvent concentration ( $y_c$ ). Because the sublimation pressures of the solid are not often available, a modified M-S-T equation was proposed by Sauceau et al.²³⁴ in which  $\rho_f$  is the density of the fluid (solvent + cosolvent mixture) and  $P^\circ$  is the standard pressure.

The M-S-T model developed for ternary cosolvent systems²³³ did not yield a satisfactory fit to the data when a solid cosolvent was used. Hence, in the work of Thakur and Gupta,¹⁰² a further-modified form of the M-S-T model was proposed for the solubility of griseofulvin in CO₂ enhanced by menthol as a cosolvent; in this modification,  $a_2$  and  $a_3$  are parameters related to the cosolvent effect and the concentration  $y_c$  is the cosolvent mole fraction.

The modification of the Chrastil model proposed by Wang¹⁴³ was derived from the solvation concept, the equilibrium constant

#### Table 8. Empirical Models

model (denotation)	correlation	ref
Chrastil	$\ln \gamma_j = a_0 + a_1 \ln \rho + \frac{a_2}{T}$	227
Chrastil modified by Garlapati and Madras (Chrastil-G-M)	$y_j \;=\; \left(rac{RT ho}{M_{ m SCE}f^0} ight)^{a_1-1} + \exp\left(a_0+rac{a_2}{T} ight)$	126
Chrastil modified by Wang (Chrastil-W)	$\ln y_j = a_0 + a_1 \rho + \frac{a_2}{T} + a_3 \ln P$	143
Chrastil modified by Sung and Shim (Chrastil-S-S)	$\ln y_j = a_0 + \frac{a_2}{T} + \left(a_1 + \frac{a_4}{T}\right) \ln \rho$	228
Chrastil modified by González (Chrastil-G)	$\ln \gamma_j = a_0 + a_1 \ln \rho + \frac{a_2}{T} + a_3 \ln \gamma_c$	229
Chrastil modified by Adachi and Lu (Chrastil-A-L)	$\ln \gamma_j = a_0 + (e_0 + e_1 \rho + e_2 \rho^2) \ln \rho + \frac{a_2}{T}$	120
Kumar and Johnston (K-J)	$\ln y_j = a_0 + a_1 \rho + \frac{a_2}{T}$	230
Bartle	$\ln \Big( rac{y_t P}{P_{ m ref}} \Big) ~=~ a_0 + a_1 ( ho -  ho_{ m ref}) + rac{a_2}{T}$	231
Mendez-Santiago and Teja (M-S-T)	$T\ln(y_jP) = a_0 + a_1\rho + a_2T$	232
M-S-T-Thakur and Gupta	$T \ln(y_j P) = a_0 + a_1 \rho + (a_2 \rho + a_3) y_c$	102
M-S-T-cosolvent	$T \ln \left(rac{y_l P}{P^{ m aub}} ight) \ = \ a_0 + a_1  ho + a_2 y_c$	233
M-S-T-Sauceau	$T \ln\left(\frac{y_{\rm f} P}{P^2}\right) = a_0 + a_1  ho_{ m f} + a_2 y_{ m c} + a_3 T$	234
del Valle and Aguilera (dV-A)	$\ln \gamma_{j} = a_{0} + a_{1} \ln \rho + \frac{a_{2}}{T} + \frac{a_{3}}{T^{2}}$	235
Yu et al.	$y_j = a_0 + a_1 P + a_2 P^2 + a_3 PT(1 - y_2) + a_4 T + a_5 T^2$	236
Gordillo et al.	$\gamma_j = a_0 + a_1 P + a_2 P^2 + a_3 P T + a_4 T + a_5 T^2$	237, 238
Ziger and Eckert (Z-E)	$\ln E = a_1 \left[ \varepsilon_j \frac{\Delta}{y_{\text{SCF}}} \left( 2 - \frac{\Delta}{y_{\text{SCF}}} \right) - \log \left( 1 + \frac{\delta_{\text{SCF}}^2}{P} \right) \right] + a_0$	239
Anderson et al.	$\ln K = \ln K_{\rm r} - \frac{\Delta H_{\rm r}^{\circ}}{R} \left(\frac{1}{T} - \frac{1}{T_{\rm r}}\right) + \frac{\Delta c_{p,\rm r}}{RT_{\rm r}(\partial \alpha/\partial T)_{p,\rm r}} \left[\frac{1}{T} \ln \frac{\rho}{\rho_{\rm r}} - \frac{\alpha_{\rm r}}{T}(T - T_{\rm r})\right]$	240, 188
Pérez et al.	$P = (c_1 + a_1 y_c) y_j^2 + (c_2 + a_2 y_c) y_j + (c_3 + a_3 y_c)$	164
Wubbolts et al.	$y_{s}^{eq} = y_{s}^{0} (1 - x_{CO_2})^{A + Bx_{CO_2}} + y_{s}^{CO_2} x_{CO_2}$	241
Sovova	$y_2 - y_1 = k y_3^m y_1^n$	242
modified Sovova	$y_2 - y_1 = k y_3^m y_1^n e^{b/T}$	88

of the high-pressure reaction, and the rules of phase equilibrium. Therefore, an improved correlation with four adjustable parameters was obtained. In this expression, the parameter  $a_0$  is dependent on the entropy of solvation  $(\Delta S^0)$  and vapor pressure  $(P^{\text{sat}})$  of the solute through the relation  $a_0 = \Delta S^0/R + \ln P^{\text{sat}}$ . The value of  $a_2$  is dependent on the enthalpy of solvation, the molar volume  $(V_s^s)$ , and the vapor pressure of the solute and is given by  $a_2 = -(\Delta H^0 + V_s^s P^{\text{sat}})/R$ . The constant  $a_1$  is related to the second virial coefficient of the solute  $(B_{22})$ , the mixed second virial coefficient  $(B_{12})$ , the molar volume, and the association number (k) through the expression  $a_1 = -[2(B_{12} - kB_{22}) + (k-1)B_{11}] + V_s^s$ . Finally,  $a_3$  is a function of k given by  $a_3 = k-1$ .

Another modification of Chrastil equation, proposed by González,²²⁹ includes the influence of cosolvent on the solute solubility, where  $\gamma_c$  is the mass concentration of the cosolvent and  $a_1$  and  $a_3$  are the association numbers of the SCF and the cosolvent, respectively.

In a modification of the Chrastil equation proposed by Adachi and Lu,¹²⁰ the association number  $a_1$  is a quadratic function of the density of the SCF (rather than a constant, as Chrastil assumed).

For each of these models, the coefficients  $a_i$  can be obtained by fitting the correlation to the experimental data.

A semiempirical correlation based on regular solution theory and the van der Waals (VdW) EOS was developed by Ziger and Eckert.²³⁹ In this approach, the VdW EOS and mixing rules are used to evaluate the solute's fugacity coefficient in the SCF in terms of solute and solvent solubility parameters. In their expression,  $E = y_j P/P_j^{\text{sub}}$  is the enhancement factor, defined as the ratio of the observed equilibrium solubility to that predicted by the ideal gas law under the same temperature and pressure conditions;  $\varepsilon_j$  is a dimensionless energy parameter given by  $\varepsilon_j = \delta_j V_j^{\text{L}}/(2.3RT)$ ; and  $\Delta$  is the ratio of the solvent's and solute's solubility parameters. Finally,  $a_1$  and  $a_0$  are two empirical constants that are obtained by regression of the experimental data. The parameters  $\delta_j$  and  $\delta_{\text{SCF}}$  are the solubility parameters of the solute and solvent, respectively,  $P_j^{\text{sub}}$  is the sublimation pressure of the solid solute, and  $V_j^{\text{L}}$  is the solute's molar volume in the liquid state.

Anderson et al.²⁴⁰ proposed the simplified density model for analyzing dissolution processes under given conditions. In this model, K,  $\Delta H^{\circ}$ , and  $\Delta c_p$  denote the equilibrium constant, standard enthalpy, and heat capacity for the dissolution process, respectively, *R* is the gas constant, and *T*,  $\rho$ , and  $\alpha$  stand for absolute temperature, density, and thermal expansivity, respectively. The subscript r denotes the reference state of 298.15 K and 0.1 MPa.

Pérez et al.¹⁶⁴ used an empirical correlation in which *P* is a function of the solute and cosolvent mole fractions and  $c_1$  to  $c_3$  and  $a_1$  to  $a_3$  are fitting parameters.

The empirical equation proposed by Wubbolts et al.²⁴¹ describes the dependence of the solubility of a compound on the mole fraction of CO₂ (used as an antisolvent) in the mixture with an organic solvent. It expresses the solubility  $y_s^{eq}$  as a function of the concentration of carbon dioxide  $x_{CO_2}$  in the solvent mixture (both on a solute-free basis). The form of the equation ensures that the correct solubility is reproduced for the limits of pure solvent  $(y_s^{O})$  and pure antisolvent  $(y_s^{CO_2})$ . The equation is fitted to the data with the constants *A* and *B*.

A commonly used semiempirical model by Sovova²⁴² has been widely used to correlate the solubilities of solids in SC CO₂ with cosolvent. In the model,  $y_2$  is the mole-fraction solubility of the solute in SC CO₂ with cosolvent,  $y_1$  is the mole-fraction solubility of solute in pure SC CO₂, and  $y_3$  is the mole fraction of the cosolvent in SC CO₂; *k*, *m*, and *n* are parameters independent of temperature and pressure that are obtained by fitting to experimental data.

The Sovova model contains three adjustable parameters (k, m, and n). It is clear that  $y_2$  is related to  $y_1$  and  $y_3$  but not related to temperature (T). When  $y_3$  remains invariant as T changes, the number of parameters in the equation decreases. Therefore, in the modified Sovova model,⁸⁸ a function of temperature (T) is added, and k, m, n, and b are the equation's parameters independent of temperature and pressure;  $y_1, y_2$ , and  $y_3$  are the same as those in Sovova model.

For the description of the solubility of a salt/water system, two relevant methods can be taken into consideration. Equations of state can be used as well as empirical and semiempirical approaches. A review of models is given in the literature.²⁶

**3.2. Thermodynamic Models.** EOSs are commonly applied in engineering practice since they can be used to predict the thermodynamic properties of fluids and describe the phase behavior of mixtures over large ranges of temperature and pressure. Detailed reviews of the thermodynamic models applied for predicting phase behavior and modeling aspects in SCF mixtures have been presented elsewhere.^{243–245}

The EOSs used for modeling the phase equilibria of the systems in Tables 2to 7 are the Soave—Redlich—Kwong (SRK) EOS, the Peng—Robinson (PR) EOS, the group contribution (GC) EOS, the modified universal functional activity coefficient (M-UNI-FAC) model, the perturbed hard-sphere chain (PHSC) EOS, the quasi-chemical nonrandom lattice fluid (QLF) EOS, a regularsolution model with a Flory—Huggins term (a solution model), and the multifluid nonrandom lattice fluid (MF-NLF) EOS.

#### 4. SUMMARY

Most of experimental solubility data for solid compounds in sub- and supercritical fluids reported in the literature between 2005 and 2010 are for binary systems. Data were found for over 380 different pure solid compounds, for which solubilities were measured in different sub- and supercritical fluids without or with cosolvents. Solubility data for binary, ternary, or multicomponent solid mixtures are still limited, as only 29 binary, two ternary, and one multicomponent solid systems have been investigated. In the future, investigations of complex multicomponent solid systems should be performed in order to understand the behavior of real complex systems and the interactions between molecules in such systems. Most of the solubility data are for biological and pharmaceutical compounds. The overview of models used for phase equilibrium calculations showed that the empirical and semiempirical models are preferred for modeling the solubility of solids in SCFs. This is a result of the fact that they do not require the knowledge of additional solute properties and often give satisfying results in correlating experimental solubility data.

#### AUTHOR INFORMATION

#### **Corresponding Author**

*E-mail: mojca.skerget@uni-mb.si. Phone: +386 2 22 94 463. Fax: +386 2 25 27 774.

#### REFERENCES

(1) Fornari, R. E.; Alessi, P.; Kikic, I. High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (1978–1987). *Fluid Phase Equilib.* **1990**, *57*, 1–33.

(2) Dohrn, R.; Brunner, G. High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (1988–1993). *Fluid Phase Equilib.* **1995**, *106*, 213–282.

(3) Christov, M.; Dohrn, R. High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (1994–1999). *Fluid Phase Equilib.* **2002**, 202, 153–218.

(4) Dohrn, R.; Peper, S.; Fonseca, J. M. S. High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (2000–2004). *Fluid Phase Equilib.* **2010**, *288*, 1–54.

(5) Hicks, C. P. A Bibliography of Thermodynamic Quantities for Binary Fluid Mixtures. In *Chemical Thermodynamics*; McGlashan, M. L., Ed.; Specialist Periodical Reports, Vol. 2; The Chemical Society: London, 1978; Chapter 9, pp. 275–538.

(6) Knapp, H.; Döring, R.; Oellrich, L.; Plöcker, U.; Prausnitz, J. M. Vapor-Liquid Equilibria for Mixtures of Low-Boiling Substances; DE-CHEMA Chemistry Data Series, Vol. VI; DECHEMA: Frankfurt, Germany, 1981.

(7) Bartle, K. D.; Clifford, A. A.; Jafar, S. A.; Shilstone, G. F. Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. *J. Phys. Chem. Ref. Data* **1991**, *20*, 713–756.

(8) Schneider, G. M. High-Pressure Investigations of Fluid Mixtures —Review and Recent Results. J. Supercrit. Fluids 1998, 13, 5–14.

(9) Gücli-Üstündag, Ö.; Temelli, F. Correlating the Solubility Behavior of Fatty Acids, Mono-, Di-, and Triglycerides, and Fatty Acid Esters in Supercritical Carbon Dioxide. *Ind. Eng. Chem. Res.* **2000**, *39*, 4756–4766.

(10) Lucien, F. P.; Foster, N. R. Solubilities of Solid Mixtures in Supercritical Carbon Dioxide: A Review. *J. Supercrit. Fluids* **2000**, *17*, 111–134.

(11) Higashi, H.; Iwai, Y.; Arai, Y. Solubilities and Diffusion Coefficients of High Boiling Compounds in Supercritical Carbon Dioxide. *Chem. Eng. Sci.* **2001**, *56*, 3027–3044.

(12) Diamond, L. W.; Akinfiev, N. N. Solubility of  $CO_2$  in water from -1.5 to 100 °C and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling. *Fluid Phase Equilib.* **2003**, 208, 265–290.

(13) Gücli-Üstündag, Ö.; Temelli, F. Solubility Behavior of Ternary Systems of Lipids, Cosolvents and Supercritical Carbon Dioxide and Processing Aspects. J. Supercrit. Fluids **2005**, *36*, 1–15.

(14) Gücli-Üstündag, Ö.; Temelli, F. Solubility Behavior of Ternary Systems of Lipids in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2006**, 38, 275–288.

(15) Gupta, R. B.; Shim, J.-J. Solubility in Supercritical Carbon Dioxide; Taylor & Francis: Boca Raton, FL, 2007.

(16) Charpentier, J.-C. Modern Chemical Engineering in the Framework of Globalization, Sustainability, and Technical Innovation. *Ind. Eng. Chem. Res.* **2007**, *46*, 3465–3485.

713

(17) Blanchard, L. A.; Hancû, D.; Beckman, E. J.; Brennecke, J. F. Green Processing Using Ionic Liquids and CO₂. *Nature* **1999**, 399, 28.

(18) Liu, Z.-T; Wu, J.; Liu, L.; Sun, C.; Song, L.; Sun, C.; Song, L.; Gao, Z.; Dong, W.; Lu, J. Solubility and Phase Behaviors of AOT Analogue Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical Carbon Dioxide. J. Chem. Eng. Data **2006**, *51*, 2045–2050.

(19) *Thermophysical Properties of Fluid Systems*; National Institute of Standards and Technology: Gaithersburg, MD, 2008; http://webbook. nist.gov/chemistry/.

(20) Poling, B. E.; Prausnitz, J. M.; O'Connell, J. P. The Properties of Gases and Liquids; McGraw-Hill: New York, 2001.

(21) Leusbrock, I.; Metz, S. J.; Rexwinkel, G.; Versteeg, G. F. The Solubility of Magnesium Chloride and Calcium Chloride in Near-Critical and Supercritical Water. *J. Supercrit. Fluids* **2010**, *53*, 17–24.

(22) Shimoyama, Y.; Higashi, H.; Tsuzaki, S.; Okazaki, F.; Kitani, Y.; Iwai, Y.; Arai, Y. Effect of Cation Species on Solubilities of Metal Chlorides in Water Vapor at High Temperatures and Pressures. J. Supercrit. Fluids 2009, 50, 1–5.

(23) Leusbrock, I.; Metz, S. J.; Rexwinkel, G.; Versteeg, G. F. The Solubilities of Phosphate and Sulfate Salts in Supercritical Water. *J. Supercrit. Fluids* **2010**, *54*, 1–8.

(24) Sciaini, G.; Marceca, E.; Fernandez-Prini, R. Solubility of Crystalline Alkali Metal Iodides in Supercritical Ammonia. *J. Supercrit. Fluids* **2005**, *35*, 106–110.

(25) Leusbrock, I.; Metz, S. J.; Rexwinkel, G.; Versteeg, G. F. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water. *J. Chem. Eng. Data* **2009**, *54*, 3215–3223.

(26) Leusbrock, I.; Metz, S. J.; Rexwinkel, G.; Versteeg, G. F. Quantitative Approaches for the Description of Solubilities of Inorganic Compounds in Near-Critical and Supercritical Water. *J. Supercrit. Fluids* **2008**, *47*, 117–127.

(27) Serin, J.-P.; Jay, S.; Cézac, P.; Contamine, F.; Mercadier, J.; Arrabie, C.; Legros-Adrian, J.-M. Experimental Studies of Solubility of Elemental Sulphur in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2010**, *53*, 12–16.

(28) Tsukahara, T.; Kachi, Y.; Kayaki, Y.; Ikariya, T.; Ikeda, Y. Spectrophotometric study on solubility of  $UO_2(\beta$ -diketonato)₂dmso complexes ( $\beta$ -diketonate = acetylacetonate, trifluoroacetylacetonate, hexafluoroacetylacetonate; dmso = dimethyl sulfoxide) in supercritical carbon dioxide. *J. Supercrit. Fluids* **2006**, *39*, 6–12.

(29) Haruki, M.; Kobayashi, F.; Okamoto, M.; Kihara, S.-i.; Takishima, S. Solubility of  $\beta$ -Diketonate Complexes for Cobalt(III) and Chromium(III) in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2010**, 297, 155–161.

(30) Haruki, M.; Kobayashi, F.; Kishimoto, K.; Kihara, S.-i.; Takishima, S. Measurement of the Solubility of Metal Complexes in Supercritical Carbon Dioxide Using a UV–Vis Spectrometer. *Fluid Phase Equilib.* **2009**, 280, 49–55.

(31) Yoda, S.; Mizuno, Y.; Furuya, T.; Takebayashi, Y.; Otake, K.; Tsuji, T.; Hiaki, T. Solubility Measurements of Noble Metal Acetylacetonates in Supercritical Carbon Dioxide by High Performance Liquid Chromatography (HPLC). *J. Supercrit. Fluids* **2008**, *44*, 139–146.

(32) Aschenbrenner, O.; Kemper, S.; Dahmen, N.; Schaber, K.; Dinjus, E. Solubility of  $\beta$ -Diketonates, Cyclopentadienyls, and Cyclooctadiene Complexes with Various Metals in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2007**, *41*, 179–186.

(33) Kreher, U.; Schebesta, S.; Walther, D. Übergangsmetall-Organoverbindungen in Superkritischem Kohlendioxid: Löslichkeiten, Reaktionen, Katalysen. Z. Anorg. Allg. Chem. **1998**, 624, 602–612.

(34) Erkey, C. Supercritical Carbon Dioxide Extraction of Metals from Aqueous Solutions: A Review. *J. Supercrit. Fluids* **2000**, *17*, 259–287.

(35) Smart, N. G.; Carleson, T.; Kast, T.; Clifford, A. A.; Burford, M. D.; Wai, C. M. Solubility of Chelating Agents and Metal-Containing Compounds in Supercritical Fluid Carbon Dioxide. *Talanta* **1997**, *44*, 137–150.

(36) Darr, J. A.; Poliakoff, M. New Directions in Inorganic and Metal–Organic Coordination Chemistry in Supercritical Fluids. *Chem. Rev.* **1999**, *99*, 495–541.

(37) Ohashi, A.; Hoshino, H.; Imura, H.; Ohashi, K. Association of Tris(pentane-2,4-dionato)chromium(III) with Modifiers of Hydrogen-Bond Donors in Supercritical Carbon Dioxide. *Anal. Sci.* **2006**, *22*, 1399–1401.

(38) Karasek, P.; Hohnova, B.; Planeta, J.; Roth, M. Solubility of Solid Ferrocene in Pressurized Hot Water. *J. Chem. Eng. Data* **2010**, *55*, 2866–2869.

(39) Weinstein, R. D.; Grotzinger, L. L.; Salemo, P.; Omiatek, D. M.; Bessel, C. A. Solubility of Several Short-Chain Lithium Dialkyldithiocarbamates in Liquid and Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2005**, *50*, 2088–2093.

(40) Weinstein, R. D.; Gribbin, J. J.; Muske, K. R. Solubility and Salting Behavior of Several  $\beta$ -Adrenergic Blocking Agents in Liquid and Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2005**, *50*, 226–229.

(41) Suleiman, D.; Estevez, L. A.; Pulido, J. C.; Garcia, J. E.; Mojica, C. Solubility of Anti-Inflammatory, Anti-Cancer, and Anti-HIV Drugs in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2005**, *51*, 1234–1241.

(42) Elizalde-Solis, O.; Galicia-Luna, L. A. New Apparatus for Solubility Measurements of Solids in Carbon Dioxide. *Ind. Eng. Chem. Res.* **2011**, *50*, 207–212.

(43) Duarte, A. R. C.; Santiago, S.; de Sousa, H. C.; Duarte, C. M. M. Solubility of Acetazolamide in Supercritical Carbon Dioxide in the Presence of Ethanol as a Cosolvent. *J. Chem. Eng. Data* **2005**, *50*, 216–220.

(44) Shen, Z.; Li, D.; McHugh, M. A. Solubility of Pyrazine and Its Derivatives in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* 2006, *51*, 2056–2064.

(45) Ravipaty, S.; Koebke, K. J.; Chesney, D. J. Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity. *J. Chem. Eng. Data* **2008**, *53*, 415–421.

(46) Chen, Y.-M.; Chen, Y.-P. Measurements for the Solid Solubilities of Antipyrine, 4-Aminoantipyrine and 4-Dimethylaminoantipyrine in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2009**, 282, 82–87.

(47) Jin, J.-s.; Pei, X.-m.; Li, J.-l.; Zhang, Z.-t. Solubility of *p*-Aminobenzenesulfonamide in Supercritical Carbon Dioxide with Acetone Cosolvent. *J. Chem. Eng. Data* **2009**, *54*, 157–159.

(48) Subra, P.; Laudani, C.-G.; Vega-Gonzalez, A.; Reverchon, E. Precipitation and Phase Behavior of Theophylline in Solvent–Supercritical CO₂ Mixtures. *J. Supercrit. Fluids* **2005**, *35*, 95–105.

(49) Thakur, R.; Gupta, R. B. Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC) Process: Formation of 2-Aminobenzoic Acid Nanoparticle. *J. Supercrit. Fluids* **2006**, *37*, 307–315.

(50) Hojjati, M.; Vatanara, A.; Yamini, Y.; Moradi, M.; Rouholamini Najafabadi, A. Supercritical CO₂ and Highly Selective Aromatase Inhibitors: Experimental Solubility and Empirical Data Correlation. *J. Supercrit. Fluids* **2009**, *50*, 203–209.

(51) Gong, X.-Y.; Cao, X.-J. Measurement and Correlation of Solubility of Artemisinin in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2009**, *284*, 26–30.

(52) Coimbra, P.; Blanco, M. R.; Costa Silva, H. S. R.; Gil, M. H.; de Sousa, H. C. Experimental Determination and Correlation of Artemisinin's Solubility in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2006**, *51*, 1097–1104.

(53) Huang, Z.; Chiew, Y. C.; Lu, W.-D.; Kawi, S. Solubility of Aspirin in Supercritical Carbon Dioxide/Alcohol Mixtures. *Fluid Phase Equilib.* **2005**, 237, 9–15.

(54) Ma, S.-L.; Lu, Z.-W.; Wu, Y.-T.; Zhang, Z.-B. Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO₂ using quartz crystal microbalance as an in situ detector. *J. Supercrit. Fluids* **2010**, *54*, 129–136.

(55) de la Fuente, J. C.; Oyarzún, B.; Quezada, N.; del Valle, J. M. Solubility of Carotenoid Pigments (Lycopene and Astaxanthin) in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2006**, 247, 90–95.

(56) Hojjati, M.; Yamini, Y.; Khajeh, M.; Vatanara, A. Solubility of Some Statin Drugs in Supercritical Carbon Dioxide and Representing the Solute Solubility Data with Several Density-Based Correlations. *J. Supercrit. Fluids* **2007**, *41*, 187–194.

(57) Sparks, D. L.; Hernandez, R.; Estévez, L. A.; Meyer, N.; French,
 T. Solubility of Azelaic Acid in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* 2007, 52, 1246–1249.

(58) Vatanara, A.; Rouholamini Najafabadi, A.; Khajeh, M.; Yamini, Y. Solubility of Some Inhaled Glucocorticoids in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2005**, *33*, 21–25.

(59) Turk, M.; Upper, G.; Hils, P. Formation of Composite Drug– Polymer Particles by Co-Precipitation During the Rapid Expansion of Supercritical Fluids. *J. Supercrit. Fluids* **2006**, *39*, 253–263.

(60) Harris, R. A.; Wilken, M.; Fischer, K.; Letcher, T. M.; Raal, D. J.; Ramjugernath, D. High Pressure Vapor—Liquid Equilibrium Measurements of Carbon Dioxide with Naphthalene and Benzoic Acid. *Fluid Phase Equilib.* **2007**, *260*, 60–64.

(61) Kayan, B.; Yang, Y.; Lindquist, E. J.; Gizir, M. Solubility of Benzoic and Salicylic Acids in Subcritical Water at Temperatures Ranging from (298 to 473) K. J. Chem. Eng. Data **2010**, 55, 2229–2232.

(62) Khajeh, M.; Yamini, Y.; Miri, R.; Hemmateenejad, B. Solubilities of Some Cyclohexyl Derivatives of Dialkyl 1,4-Dihydro-2,6dimethyl-4-(1-methyl-5-nitro-imidazol-2-yl)-3,5-pyridinedicarboxylates (Nifedipine Analogues) in Supercritical Carbon Dioxide. Part I. J. Chem. Eng. Data **2005**, *50*, 344–347.

(63) Khajeh, M.; Yamini, Y.; Miri, R.; Hemmateenejad, B. Solubilities of Some Phenyl Derivatives of Dialkyl 1,4-Dihydro-2,6-dimethyl-4-(1-methyl-5-nitro-imidazol-2-yl)-3,5-pyridinedicarboxylates in Supercritical Carbon Dioxide. Part II. J. Chem. Eng. Data **2005**, *50*, 348–351.

(64) Nobre, B. P.; Mendes, R. L.; Queiroz, E. M.; Pessoa, F. P.; Coelho, J. P.; Palavra, A. F. Solubility, Calculation of Solubilities for Systems Containing Multiple Non-Volatile Solutes and Supercritical Carbon Dioxide. *Ind. Eng. Chem. Res.* **2009**, *48*, 1551–1555.

(65) de la Fuente, J. C.; Quezada, N.; del Valle, J. M. Solubility of Boldo Leaf Antioxidant Components (Boldine) in High-Pressure Carbon Dioxide. *Fluid Phase Equilib.* **2005**, 235, 196–200.

(66) Carr, A. G.; Branch, A.; Mammucari, R.; Foster, N. R. The Solubility and Solubility Modeling of Budesonide in Pure and Modified Subcritical Water Solutions. *J. Supercrit. Fluids* **2010**, *55*, 37–42.

(67) Iwai, Y.; Nagano, H.; Lee, G. S.; Uno, M.; Arai, Y. Measurement of Entrainer Effects of Water and Ethanol on Solubility of Caffeine in Supercritical Carbon Dioxide by FT-IR Spectroscopy. *J. Supercrit. Fluids* **2006**, *38*, 312–318.

(68) Kopcak, U.; Mohamed, R. S. Caffeine Solubility in Supercritical Carbon Dioxide/Co-Solvent Mixtures. J. Supercrit. Fluids 2005, 34, 209–214.

(69) Carvalho, R. J., Jr.; Corazza, M. L.; Cardozo-Filho, L.; Meireles, M. A. A. Phase Equilibrium for (Camphor +  $CO_2$ ), (Camphor + Propane), and (Camphor +  $CO_2$  + Propane). *J. Chem. Eng. Data* **2006**, *51*, 997–1000.

(70) Perrotin-Brunel, H.; van Roosmalen, M. J. E.; Kroon, M. C.; van Spronsen, J.; Witkamp, G.-J.; Peters, C. J. Solubility of Cannabinol in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, *55*, 3704–3707.

(71) de la Fuente, J.; Valderrama, J. O.; Bottini, S. B.; del Valle, M. J. Measurement and Modeling of Solubilities of Capsaicin in High-Pressure CO₂. *J. Supercrit. Fluids* **2005**, *34*, 195–201.

(72) Elizalde-Solis, O.; Galicia-Luna, L. A. Solubilities and Densities of Capsaicin in Supercritical Carbon Dioxide at Temperatures from 313 to 333 K. *Ind. Eng. Chem. Res.* **2006**, *45*, 5404–5410.

(73) Chafer, A.; Fornari, T.; Berna, A.; Ibanez, E.; Reglero, G. Solubility of Solid Carnosic Acid in Supercritical  $CO_2$  with Ethanol as a Co-Solvent. *J. Supercrit. Fluids* **2005**, *34*, 323–329.

(74) Saldana, M. D. A.; Sun, L.; Guigard, S. E.; Temelli, F. Comparison of the Solubility of  $\beta$ -Carotene in Supercritical CO₂ Based on a Binary and a Multicomponent Complex System. *J. Supercrit. Fluids* **2006**, 37, 342–349.

(75) Borges, G. R.; Junges, A.; Franceschi, E.; Corazza, F. C.; Corazza, M. L.; Oliveira, J. V.; Dariva, C. High-Pressure Vapor—Liquid Equilibrium Data for Systems Involving Carbon Dioxide + Organic Solvent +  $\beta$ -Carotene. *J. Chem. Eng. Data* **2007**, *52*, 1437–1441. (76) Shi, J.; Khatri, M.; Xue, S. J.; Mittal, G. S.; Ma, Y.; Li, D. Solubility of Lycopene in Supercritical CO₂ Fluid As Affected by Temperature and Pressure. *Sep. Purif. Technol.* **2009**, *66*, 322–328.

(77) Huang, J. F.; Jien, C. H.; Lee, L. S. Effects of Cosolvents on the Solubility of  $\beta$ -Carotene in Supercritical Carbon Dioxide. *J. Chin. Inst. Chem. Eng.* **2006**, *37*, 329–339.

(78) Nunes, A. V. M.; Matias, A. A.; Nunes da Ponte, M.; Duarte, C. M. M. Quaternary Phase Equilibria for  $scCO_2 + Biophenolic Compound + Water + Ethanol. J. Chem. Eng. Data 2007, 52, 244–247.$ 

(79) Huang, Z.; Feng, M.; Guo, Y.; Su, J.; Shi, Y.; Chiew, Y. C. Influence of Matrix Composition on the Ternary Solubility of Cholesteryl Esters in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2009**, 285, 54–61.

(80) Huang, Z.; Feng, M.; Guo, Y.; Su, J.; Teng, L.; Liu, T.; Chiew,
Y. C. Ternary Solubility of Mixed Cholesteryl Esters in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* 2008, 272, 8–17.

(81) Chen, Y.-P.; Chen, Y.-M.; Tang, M. Solubilities of Cinnamic Acid, Phenoxyacetic Acid and 4-Methoxyphenylacetic Acid in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2009**, *275*, 33–38.

(82) Chafer, A.; Fornari, T.; Stateva, R. P.; Berna, A. *trans*-Cinnamic Acid Solubility Enhancement in the Presence of Ethanol as a Supercritical CO₂ Cosolvent. J. Chem. Eng. Data **2009**, 54, 2263–2268.

(83) Park, C. I.; Shin, M. S.; Kim, H. Solubility of Climbazole and Triclocarban in Supercritical Carbon Dioxide: Measurement and Correlation. *J. Chem. Thermodyn.* **2009**, *41*, 30–34.

(84) Chen, Y.-M.; Lin, P.-C.; Tang, M.; Chen, Y.-P. Solid Solubility of Antilipemic Agents and Micronization of Gemfibrozil in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2010**, *52*, 175–182.

(85) Hosseini, M. H.; Alizadeh, N.; Khanchi, A. R. Solubility Analysis of Clozapine and Lamotrigine in Supercritical Carbon Dioxide Using Static System. *J. Supercrit. Fluids* **2010**, *52*, 30–35.

(86) Rodrigues, R. F.; Tashima, A. K.; Pereira, R. M. S.; Mohamed, R. S.; Cabral, F. A. Coumarin Solubility and Extraction from Emburana (*Torresea cearensis*) Seeds with Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2008**, 43, 375–382.

(87) Coimbra, P.; Fernandes, D.; Gil, M. H.; de Sousa, H. C. Solubility of Diflunisal in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 1990–1995.

(88) Tang, Z.; Jin, J.-s.; Zhang, Z.-t.; Yu, X.-j.; Xu, J.-n. Solubility of 3,5-Dinitrobenzoic Acid in Supercritical Carbon Dioxide with Cosolvent at Temperatures from (308 to 328) K and Pressures from (10.0 to 21.0) MPa. *J. Chem. Eng. Data* **2010**, *55*, 3834–3841.

(89) Nunes, A. V. M.; Sampaio de Sousa, A. R.; Nunes da Ponte, M.; Duarte, C. M. M. Phase Behaviour Study of Chalcone in Dense CO₂. *J. Supercrit. Fluids* **2009**, *49*, 9–15.

(90) Yamini, Y.; Kalantarian, P.; Hojjati, M.; Esrafily, A.; Moradi, M.; Vatanara, A.; Harrian, I. Solubilities of Flutamide, Dutasteride, and Finasteride as Antiandrogenic Agents, in Supercritical Carbon Dioxide: Measurement and Correlation. *J. Chem. Eng. Data* **2010**, *55*, 1056–1059.

(91) Song, Q.; Zhu, J.; Wan, J.; Cao, X. Measurement and Modeling of Epigallocatechin Gallate Solubility in Supercritical Carbon Dioxide Fluid with Ethanol Cosolvent. *J. Chem. Eng. Data* **2010**, *55*, 3946–3951.

(92) Li, W.; Jin, J.; Tian, G.; Zhang, Z. Single-Component and Mixture Solubilities of Ethyl *p*-Hydroxybenzoate and Ethyl *p*-Aminobenzoate in Supercritical CO₂. *Fluid Phase Equilib.* **2008**, *264*, 93–98.

(93) Škerget, M.; Čretnik, L.; Knez, Ž.; Škrinjar, M. Influence of the Aromatic Ring Substituents on Phase Equilibria of Vanillins in Binary Systems with CO₂. *Fluid Phase Equilib*. **2005**, 231, 11–19.

(94) Knez, Ž.; Škerget, M.; Perva-Uzunalić, A. Phase Equilibria of Vanillins in Compressed Gases. J. Supercrit. Fluids **2007**, *43*, 237–248.

(95) Weinstein, R. D.; Hanlon, W. H.; Donohue, J. P.; Simeone, M.; Rozich, A.; Muske, K. R. Solubility of Felodipine and Nitrendipine in Liquid and Supercritical Carbon Dioxide by Cloud Point and UV Spectroscopy. J. Chem. Eng. Data **2007**, *52*, 256–260.

(96) Sun, Y.; Li, S.; Quan, C. Solubility of Ferulic Acid and Tetramethylpyrazine in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2005**, *50*, 1125–1128.

(97) Chin, G. J.; Chee, Z. H.; Chen, W.; Rajendran, A. Solubility of Flurbiprofen in  $CO_2$  and  $CO_2$  + Methanol. *J. Chem. Eng. Data* **2010**, *55*, 1542–1546.

(98) Montanés, F.; Fornari, T.; Stateva, R. P.; Olano, A.; Ibánez, E. Solubility of Carbohydrates in Supercritical Carbon Dioxide with (Ethanol + Water) Cosolvent. *J. Supercrit. Fluids* **2009**, *49*, 16–22.

(99) Dilek, C.; Manke, C. W.; Gulari, E. Phase behavior of  $\beta$ -D-galactose pentaacetate—carbon dioxide binary system. *Fluid Phase Equilib.* **2006**, 239, 172–179.

(100) Chafer, A.; Fornari, T.; Stateva, R. P.; Berna, A.; Garcia-Reverter, J. Solubility of the Natural Antioxidant Gallic Acid in Supercritical  $CO_2$  + Ethanol as a Cosolvent. *J. Chem. Eng. Data* **2007**, *52*, 116–121.

(101) Carr, A. G.; Mammucari, R.; Foster, N. R. Solubility and Micronization of Griseofulvin in Subcritical Water. *Ind. Eng. Chem. Res.* **2010**, *49*, 3403–3410.

(102) Thakur, R.; Gupta, R. B. Rapid Expansion of Supercritical Solution with Solid Cosolvent (RESS-SC) Process: Formation of Griseofulvin Nanoparticles. *Ind. Eng. Chem. Res.* **2005**, *44*, 7380–7387.

(103) Sparks, D. L.; Estévez, L. A.; Hernandez, R.; McEwen, J.; French, T. Solubility of Small-Chain Carboxylic Acids in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, *55*, 4922–4927.

(104) Munuklu, P.; Wubbolts, F.; De Loos, T. W.; Jansens, P. J. The Phase Behavior of Systems of Supercritical  $CO_2$  or Propane with Edible Fats and a Wax. J. Supercrit. Fluids **2006**, 39, 1–5.

(105) Muntó, M.; Ventosa, N.; Sala, S.; Veciana, J. Solubility Behaviors of Ibuprofen and Naproxen Drugs in Liquid "CO₂–Organic Solvent" Mixtures. *J. Supercrit. Fluids* **2008**, *47*, 147–153.

(106) Shin, M. S.; Kim, H. Solubility of Iodopropynyl Butylcarbamate in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2008**, *270*, 45–49.

(107) Heryanto, R.; Abdullah, E. C.; Hasan, M. Solubility of Isoniazid in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, 55, 2306–2309.

(108) Weinstein, R. D.; Muske, K. R.; Martin, S.-A.; Schaeber, D. D. Liquid and Supercritical Carbon Dioxide-Assisted Implantation of Ketoprofen into Biodegradable Sutures. *Ind. Eng. Chem. Res.* **2010**, *49*, 7281–7286.

(109) Garlapati, C.; Madras, G. Solubilities of Dodecanoic and Tetradecanoic Acids in Supercritical  $CO_2$  with and without Entrainers. *J. Chem. Eng. Data* **2008**, *53*, 2637–2641.

(110) Oh, D.-J.; Lee, B.-C.; Hwang, S.-J. Solubility of Simvastatin and Lovastatin in Mixtures of Dichloromethane and Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2007**, *52*, 1273–1279.

(111) Liu, L.; Li, Z.; Liu, Z.-W.; Liu, Z.-T. Solubilities of L-Proline in Subcritical HFC-134a and Supercritical CO₂ Fluids. *J. Chem. Eng. Data* **2009**, *54*, 2780–2784.

(112) Hong, L.; Thies, M. C.; Enick, R. M. Global Phase Behavior for CO₂-Philic Solids: The CO₂ +  $\beta$ -D-Maltose Octaacetate System. *J. Supercrit. Fluids* **2005**, *34*, 11–16.

(113) Ismadji, S. Solubility of Methyl Salicylate in Supercritical Carbon Dioxide at Several Temperatures. *J. Chem. Eng. Data* **2008**, 53, 2207–2210.

(114) Favareto, R.; Pereira, J. R. D.; Santana, C. C.; Madureira, E. H.; Cabral, V. F.; Tavares, F. W.; Cardozo-Filho, L. High-Pressure Phase Diagram of the Drug Mitotane in Compressed and/or Supercritical CO₂. J. Chem. Thermodyn. **2010**, *42*, 286–290.

(115) Su, C.-S.; Chen, Y.-P. Measurement and Correlation for the Solid Solubility of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2008**, *43*, 438–446.

(116) Freitag, J.; Yokoyama, Y.; Kuramochi, H.; Kawamoto, K.; Nagahama, K.; Kato, S. Measurements of the Solubilities of Derivatized Amino Acids in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2007**, 257, 201–206.

(117) Turk, M.; Kruska, T. Experimental and Theoretical Investigation of the Phase Behavior of Naproxen in Supercritical CO₂. *J. Chem. Eng. Data* **2009**, *54*, 1592–1597. (118) Carr, A. G.; Mammucari, R.; Foster, N. R. Solubility, Solubility Modeling, and Precipitation of Naproxen from Subcritical Water Solutions. *Ind. Eng. Chem. Res.* **2010**, *49*, 9385–9393.

(119) Nunez, G. A.; del Valle, J. M.; de la Fuente, J. C. Solubilities in Supercritical Carbon Dioxide of (2*E*,6*E*)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol (Farnesol) and (2*S*)-5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one (Naringenin). *J. Chem. Eng. Data* **2010**, *55*, 3863–3868.

(120) Sparks, D. L.; Estévez, L. A.; Hernandez, R.; Barlow, K.; French, T. Solubility of Nonanoic (Pelargonic) Acid in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 407–410.

(121) Corrêa, F. V.; Comim, S. R. R.; de Cesaro, A. M.; Rigo, A. A.; Mazutti, M. A.; Hense, H.; Oliveira, J. V. Phase equilibrium data for the ternary system (propane + chloroform + oryzanol). *J. Chem. Thermodyn.* **2011**, *43*, 34–38.

(122) Su, B.; Xing, H.; Yang, Y.; Ren, Q. Solubility of Oxymatrine in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2008, 53, 1672–1674.

(123) Su, B.; Xing, H.; Ren, Q. Solubilization of Oxymatrine in Water-in-Supercritical Carbon Dioxide Microemulsions. *J. Chem. Eng. Data* **2008**, *53*, 1705–1707.

(124) Comim, S. R. R.; Franceschi, E.; Borges, G. R.; Corazza, M. L.; Oliveira, J. V.; Ferreira, S. R. S. Phase Equilibrium Measurements and Modelling of Ternary System (Carbon Dioxide + Ethanol + Palmitic Acid). J. Chem. Thermodyn. **2010**, *42*, 348–354.

(125) Garlapati, C.; Madras, G. Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical  $CO_2$  with and without Cosolvents. *J. Chem. Eng. Data* **2008**, *53*, 2913–2917.

(126) Brandt, L.; Elizalde-Solis, O.; Galicia-Luna, L. A.; Gmehling, J. Solubility and Density Measurements of Palmitic Acid in Supercritical Carbon Dioxide + Alcohol Mixtures. *Fluid Phase Equilib.* **2010**, *289*, 72–79.

(127) Garlapati, C.; Madras, G. Solubilities of Palmitic and Stearic Fatty Acids in Supercritical Carbon Dioxide. *J. Chem. Thermodyn.* **2010**, *42*, 193–197.

(128) Hybertson, B. M. Solubility of the Sesquiterpene Alcohol Patchoulol in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2007**, *52*, 235–238.

(129) Ch, R.; Garlapati, C.; Madras, G. Solubility of *n*-(4-Ethoxyphenyl)ethanamide in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, *55*, 1437–1440.

(130) Chafer, A.; Fornari, T.; Stateva, R. P.; Berna, A. D-Pinitol Solubility in Supercritical  $CO_2$ : Experimental Data and Correlation. *J. Chem. Eng. Data* **2006**, *51*, 612–615.

(131) Kumoro, A. C.; Singh, H.; Hasan, M. Solubility of Piperine in Supercritical and Near Critical Carbon Dioxide. *Chin. J. Chem. Eng.* **2009**, *17*, 1014–1020.

(132) Favareto, R.; Cabral, V. F.; Corazza, M. L.; Cardozo-Filho, L. Vapor–Liquid and Solid–Fluid Equilibrium for Progesterone + CO₂, Progesterone + Propane, and Progesterone + *N*-Butane Systems at Elevated Pressures. *J. Supercrit. Fluids* **2008**, *45*, 161–171.

(133) Jin, J.-s.; Zhang, Z.-t.; Li, Q.-s.; Li, Y.; Yu, E.-p. Solubility of Propyl *p*-Hydroxybenzoate in Supercritical Carbon Dioxide with and without a Cosolvent. *J. Chem. Eng. Data* **2005**, *50*, 801–803.

(134) Wang, L.-H.; Cheng, Y.-Y. Solubility of Puerarin in Ethanol + Supercritical Carbon Dioxide. J. Chem. Eng. Data **2005**, 50, 1747–1749.

(135) Tian, G.-h.; Jin, J.-s.; Guo, J.-j.; Zhang, Z.-t. Mixed Solubilities of 5-Sulfosalicylic Acid and *p*-Aminobenzoic Acid in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2007**, *52*, 1800–1802.

(136) Brunel, H. P.; Perez, P. C.; Van Roosmalen, M. J. E.; Van Spronsen, J.; Witkamp, G.-J.; Peters, C. J. Solubility of  $\Delta^9$ -tetrahydrocannabinol in supercritical carbon dioxide: Experiments and modeling. *J. Supercrit. Fluids* **2010**, *52*, 6–10.

(137) de la Fuente, J. C.; Nunez, G.; del Valle, J. M. Solubility of 1,3-Dimethyl-7*H*-purine-2,6-dione (Theophylline) in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2009**, *54*, 3034–3036.

(138) Hybertson, B. M. Solubility of  $\alpha$ -Tocopheryl Succinate in Supercritical Carbon Dioxide Using Offline HPLC-MS/MS Analysis. *J. Chem. Eng. Data* **200**7, *52*, 1123–1127.

(139) Bao, Z.-B.; Wei, Z.-J.; Su, B.-G.; Ren, Q.-L. Solubility of Racemic Paroxetine Intermediate in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2006**, *51*, 1731–1734.

(140) Higashi, H.; Iwai, Y.; Miyazaki, K.; Ogino, Y.; Oki, M.; Arai, Y. Measurement and Correlation of Solubilities for Trifluoromethylbenzoic Acid Isomers in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2005**, 33, 15–20.

(141) Zhou, R.; Li, S.; Liu, T. Measurement and Correlation of Solubility of Uracil in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 2679–2682.

(142) Catchpole, O. J.; Tallon, S. J.; Dyer, P. J.; Lan, J.-S.; Jensen, B.; Rasmussen, O. K.; Grey, J. B. Measurement and Modelling of Urea Solubility in Supercritical  $CO_2$  and  $CO_2$  + Ethanol Mixtures. *Fluid Phase Equilib.* **2005**, 237, 212–218.

(143) Andersson, T. A.; Hartonen, K. M.; Riekkola, M.-L. Solubility of Acenaphthene, Anthracene, and Pyrene in Water at 50 °C to 300 °C. *J. Chem. Eng. Data* **2005**, *50*, 1177–1183.

(144) Abbott, A. P.; Eltringham, W.; Hopea, E. G.; Nicola, M. Solubility of Unsaturated Carboxylic Acids in Supercritical 1,1,1,2-Tetrafluoroethane (HFC 134a) and a Methodology for the Separation of Ternary Mixtures. *Green Chem.* **2005**, *7*, 210–216.

(145) Ozcan, A. S.; Ozcan, A. Measurement and Correlation of Solubility of Acid Red 57 in Supercritical Carbon Dioxide by Ion-Pairing with Hexadecyltrimethylammonium Bromide. *J. Supercrit. Fluids* **2006**, *37*, 23–28.

(146) Özcan, A.; Özcan, A. S. Solubility of an Acid Dye in Supercritical Carbon Dioxide by Ion-Pairing with Dodecyltrimethylammonium Bromide. *Fluid Phase Equilib.* **2006**, *249*, 1–5.

(147) Karasek, P.; Planeta, J.; Roth, M. Aqueous Solubility Data for Pressurized Hot Water Extraction for Solid Heterocyclic Analogs of Anthracene, Phenanthrene and Fluorene. *J. Chromatogr., A* **2007**, *1140*, 195–204.

(148) Esmaeilzadeh, F.; Goodarznia, I. Separation of Phenanthrene from Anthracene Oil Using Supercritical Carbon Dioxide. *Chem. Eng. Technol.* **2005**, *28*, 106–109.

(149) Martinez, F.; Martin, A.; Asencio, I.; Rincon, J. Solubility of Anthracene in Sub- and Supercritical Propane. *J. Chem. Eng. Data* **2010**, 55, 1232–1236.

(150) Karasek, P.; Planeta, J.; Roth, M. Solubility of Solid Polycyclic Aromatic Hydrocarbons in Pressurized Hot Water at Temperatures from 313 K to the Melting Point. J. Chem. Eng. Data **2006**, *51*, 616–622.

(151) Karásek, P.; Planeta, J.; Roth, M. Solubilities of Oxygenated Aromatic Solids in Pressurized Hot Water. J. Chem. Eng. Data 2009, 54, 1457–1461.

(152) Leeke, G.; Santos, R.; Al-Duri, B.; Seville, J.; Smith, C.; Holmes, A. B. Solubilities of 4-Phenyltoluene, Phenylboric Acid, Biphenyl, and Iodobenzene in Carbon Dioxide from Measurements of the Relative Permittivity. *J. Chem. Eng. Data* **2005**, *50*, 1370–1374.

(153) Wang, W; Yang, H.-J.; Hu, J.; Guo, C.-Y. Equilibrium Solubilities of a *p*-Toluenesulfonamide and Sulfanilamide Mixture in Supercritical Carbon Dioxide with and without Ethanol. *J. Supercrit. Fluids* **2009**, *51*, 181–187.

(154) Kautz, C. B.; Schneider, G. M.; Shim, J.-J.; Wagner, B.; Tuma, D. Solubilities of a 1,4-Bis(alkylamino)-9,10-anthraquinone Series in Compressed Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 2356–2371.

(155) Kraska, T.; Tuma, D. High-Pressure Phase Equilibria in Binary and Ternary Mixtures with One Near- or Supercritical and One High-Molecular Component. New Insights for Application and Theory. *J. Mater. Sci.* **2006**, *41*, 1547–1556.

(156) Liu, J.; Li, D.; Byun, H. S.; McHugh, M. A. Impact of Fluorine on the Phase Behavior of Bisphenol-Type Compounds in Supercritical CO₂, 1,1-Difluoroethane, and 1,1,1,2-Tetrafluoroethane. *Ind. Eng. Chem. Res.* **2008**, 47, 524–529.

(157) Liu, J.; Li, D.; Byun, H. S.; McHugh, M. A. Impact of Fluorine on the Phase Behavior of Bis-*p*-tolyl Propane in Supercritical CO₂, 1,1-Difluoroethane, and 1,1,1,2-Tetrafluoroethane. *Fluid Phase Equilib.* **2008**, 267, 39–46.

(158) Ga-Houreade, L.; Torrente, C.; Galan, M. A. Study of the Solubility of Kerogen from Oil Shales (Puertollano, Spain) in Supercritical Toluene and Methanol. *Fuel* **2007**, *86*, 698–705.

(159) Favareto, R.; Fregadolli, P. H.; Cabral, V. F.; Antunes, O. A. C.; Cardozo-Filho, L. Phase Equilibria of Acrylonitrile and *p*-Bromobenzaldehyde in Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 1080–1084.

(160) Shimoyama, Y.; Sonoda, M.; Miyazaki, K.; Higashi, H.; Iwai, Y.; Arai, Y. Measurement of Solubilities for Rhodium Complexes and Phosphine Ligands in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2008**, *44*, 266–272.

(161) Khimeche, K.; Alessi, P.; Kikic, I.; Dahmani, A. Solubility of Diamines in Supercritical Carbon Dioxide: Experimental Determination and Correlation. *J. Supercrit. Fluids* **2007**, *41*, 10–19.

(162) Garlapati, C.; Madras, G. Solubilities of Some Chlorophenols in Supercritical  $CO_2$  in the Presence and Absence of Cosolvents. *J. Chem. Eng. Data* **2010**, *55*, 273–277.

(163) Pérez, E.; Cabañas, A.; Sánchez-Vicente, Y.; Renuncio, J. A. R.; Pando, C. High-Pressure Phase Equilibria for the Binary System Carbon Dioxide + Dibenzofuran. *J. Supercrit. Fluids* **2008**, *46*, 238–244.

(164) Pérez, E.; Cabañas, A.; Renuncio, J. A. R.; Sánchez-Vicente, J.; Pando, C. Cosolvent Effect of Methanol and Acetic Acid on Dibenzofuran Solubility in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* 2008, 53, 2649–2653.

(165) Kotnik, P.; Perva-Uzunalić, A.; Škerget, M.; Knez, Ž. Phase Equilibria of Permethrin and Dicofol with Carbon Dioxide. *J. Chem. Eng. Data* **2005**, *50*, 1823–1828.

(166) Coimbra, P.; Gil, M. H.; Duarte, C. M. M.; Heron, B. M.; de Sousa, H. C. Solubility of a Spiroindolinonaphthoxazine Photochromic Dye in Supercritical Carbon Dioxide: Experimental Determination and Correlation. *Fluid Phase Equilib.* **2005**, 238, 120–128.

(167) Shamsipur, M.; Fasihi, J.; Khanchi, A.; Yamini, Y.; Valinezhad, A.; Sharghi, H. Solubilities of some 9,10-Anthraquinone Derivatives in Supercritical Carbon Dioxide: A Cubic Equation of State Correlation. *J. Supercrit. Fluids* **2008**, *47*, 154–160.

(168) Karásek, P.; Planeta, J.; Roth, M. Solubilities of Triptycene, 9-Phenylanthracene, 9,10-Dimethylanthracene, and 2-Methylanthracene in Pressurized Hot Water at Temperatures from 313 K to the Melting Point. J. Chem. Eng. Data **2008**, 53, 160–164.

(169) Ravipaty, S.; Sclafani, A. G.; Fonslow, B. R.; Chesney, D. J. Solubilities of Substituted Phenols in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2006**, *51*, 1310–1315.

(170) Zheng, J.; Xu, M.; Lu, X.; Lin, C. Measurement and Correlation of Solubilities of C.I. Disperse Red 73, C.I. Disperse Blue 183 and Their Mixture in Supercritical Carbon Dioxide. *Chin. J. Chem. Eng.* **2010**, *18*, 648–653.

(171) Tsai, C.-C.; Lin, H.-m.; Lee, M.-J. Solubility of 1,5-Diaminobromo-4,8-dihydroxyanthraquinone in Supercritical Carbon Dioxide with or without Cosolvent. *J. Chem. Eng. Data* **2009**, *54*, 1442–1446.

(172) Banchero, M.; Ferri, A.; Manna, L.; Sicardi, S. Solubility of Disperse Dyes in Supercritical Carbon Dioxide and Ethanol. *Fluid Phase Equilib.* **2006**, *243*, 107–114.

(173) Banchero, M.; Ferri, A.; Manna, L. The Phase Partition of Disperse Dyes in the Dyeing of Polyethylene Terephthalate with a Supercritical  $CO_2$ /Methanol Mixture. *J. Supercrit. Fluids* **2009**, *48*, 72–78.

(174) Bao, P.; Dai, J. Relationships between the Solubility of C.I. Disperse Red 60 and Uptake on PET in Supercritical CO₂. *J. Chem. Eng. Data* **2005**, *50*, 838–842.

(175) Kim, T.; Kim, G.; Park, J.-Y.; Lim, J. S.; Yoo, K.-P. Solubility Measurement and Dyeing Performance Evaluation of Aramid NOMEX Yarn by Dispersed Dyes in Supercritical Carbon Dioxide. *Ind. Eng. Chem. Res.* **2006**, *45*, 3425–3433.

(176) Dong, P.; Xu, M.; Lu, X.; Lin, C. Measurement and Correlation of Solubilities of C.I. Disperse Red 73, C.I. Disperse Yellow 119 and Their Mixture in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2010**, *297*, 46–51. (177) Tsai, C.-C.; Lin, H.-m.; Lee, M.-J. Solubility of C.I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent. *J. Chem. Eng. Data* **2008**, *53*, 2163–2169.

(178) Yamini, Y.; Moradi, M.; Hojjati, M.; Nourmohammadian, F.; Saleh, A. Solubilities of Some Disperse Yellow Dyes in Supercritical CO₂. J. Chem. Eng. Data **2010**, 55, 3896–3900.

(179) Tsai, C.-C.; Lin, H.-m.; Lee, M.-J. Solubility of Disperse Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent. *Fluid Phase Equilib.* **2007**, *260*, 287–294.

(180) Hojjati, M.; Yamini, Y.; Khajeh, M.; Rouhani, S.; Gharanjig, K. Measurement and Correlation of Solubilities of Some Disperse Azo Dyes in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 634–638.

(181) Coimbra, P.; Fernandes, D.; Ferreira, P.; Gil, M. H.; de Sousa, H. C. Solubility of Irgacure[®] 2959 Photoinitiator in Supercritical Carbon Dioxide: Experimental Determination and Correlation. *J. Supercrit. Fluids* **2008**, *45*, 272–281.

(182) Zhang, Z.-t.; Li, W.-m.; Jin, J.-s.; Tian, G.-h. Solubility of *p*-Methylbenzene Sulfonic Acid in Pure and Modified Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2008**, *53*, 600–602.

(183) Huang, S.-Y.; Tang, M.; Ho, S. L.; Chen, Y.-P. Solubilities of *N*-Phenylacetamide, 2-Methyl-*N*-Phenylacetamide and 4-Methyl-*N*-Phenylacetamide in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **2007**, *42*, 165–171.

(184) Zuniga-Moreno, A.; Galicia-Luna, L. A.; Camacho-Camacho, L. E. Measurements of Solid Solubilities and Volumetric Properties of Naphthalene + Carbon Dioxide Mixtures with a New Assembly Taking Advantage of a Vibrating Tube Densitometer. *Fluid Phase Equilib.* **2005**, 234, 151–163.

(185) Tian, G.-H.; Jin, J.-S.; Li, Q.-S.; Zhang, Z.-T. Solubility of *p*-Nitrobenzoic Acid in Supercritical Carbon Dioxide with and without Cosolvents. *J. Chem. Eng. Data* **2006**, *51*, 430–433.

(186) de la Fuente, J. C.; Bottini, B.; Peters, C. J. Measurement of the Phase Behavior of the Ternary System Carbon Dioxide + Acetone + Phenanthrene. *J. Chem. Eng. Data* **2006**, *51*, 2–6.

(187) Tian, G.; Jin, J.; Zhang, Z.; Guo, J. Solubility of Mixed Solids in Supercritical Carbon Dioxide. *Fluid Phase Equilib.* **2007**, *251*, 47–51.

(188) Sue, K.; Usami, T.; Arai, K.; Kasai, H.; Nakanishi, H.; Hiaki, T. Quinacridone Solubility in Hot-Compressed Water. *J. Chem. Eng. Data* **2007**, *52*, 714–717.

(189) Li, J.; Jin, J.; Zhang, Z.; Pei, X. Equilibrium Solubilities of a *p*-Toluenesulfonamide and Sulfanilamide Mixture in Supercritical Carbon Dioxide with and without Ethanol. *J. Supercrit. Fluids* **2010**, *52*, 11–17.

(190) Li, J.-l.; Jin, J.-s.; Zhang, Z.-t.; Pei, X.-m. Solubility of *p*-Toluenesulfonamide in Pure and Modified Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2009**, *54*, 1142–1146.

(191) Liu, T.; Li, S.; Zhou, R.; Jia, D.; Tian, S. Solubility of Triphenylmethyl Chloride and Triphenyltin Chloride in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2009**, *54*, 1913–1915.

(192) Dilek, C.; Manke, C. W.; Gulari, E. Phase Behavior of Tri-*tert*butylphenol—Carbon Dioxide Binary System. *J. Supercrit. Fluids* **2008**, *43*, 421–429.

(193) Hong, L.; Fidler, E.; Enick, R.; Marentis, R. Tri-*tert*-Butylphenol: A Highly CO₂-Soluble Sand Binder. *J. Supercrit. Fluids* **2008**, *44*, 1–7.

(194) Huang, Z.; Yang, X.-W.; Sun, G.-B.; Song, S.-W.; Kawi, S. The Solubilities of Xanthone and Xanthene in Supercritical Carbon Dioxide: Structure Effect. *J. Supercrit. Fluids* **2005**, *36*, 91–97.

(195) Huang, Z.; Sun, G.-B.; Kawi, S.; Shi, Y.; Wen, R.; Song, S.-W. Solubilities of Xanthone and Xanthene in Supercritical CO₂. *Fluid Phase Equilib.* **2005**, *238*, 26–32.

(196) Karásek, P.; Planeta, J.; Roth, M. Solubilities of Adamantane and Diamantane in Pressurized Hot Water. *J. Chem. Eng. Data* **2008**, *53*, 816–819.

(197) Schwarz, C. E.; Knoetze, J. H. Phase Equilibria of High Molecular Mass 1-Alcohols in Supercritical Propane. *Fluid Phase Equilib.* **2007**, 258, 51–57.

(198) Liu, Z.-T.; Liu, L.; Wu, J.; Lu, J.; Sun, P.; Song, L.; Liu, Z.; Dong, W.; Gao, Z. Phase Behaviors of Aerosol-OT Analogue Fluorinated Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical CO₂. Ind. Eng. Chem. Res. **2007**, 46, 22–28.

(199) Poot, W.; de Loos, T. W. High-Pressure Phase Behavior of the Binary Systems (Propane + Diamantane) and (Ethane + Diamantane). *Ind. Eng. Chem. Res.* **2008**, *47*, 5146–5151.

(200) Yang, H.-J.; Tian, J.; Kim, H. New Highly CO₂-Philic Diglycolic Acid Esters: Synthesis and Solubility in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, *55*, 4130–4139.

(201) Liu, Z.-T.; Liu, L.; Wu, J.; Song, L.; Gao, Z.; Dong, W.; Lu, J. Solubility and Phase Behaviors of AOT Analogue Surfactants in 1,1,1,2-Tetrafluoroethane and Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2006**, *51*, 2045–2050.

(202) Xie, Y.; Yang, H.-J.; Wang, W.; Chen, R. Solubilities of Diglycolic Acid Esters in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2009**, *54*, 102–107.

(203) Wang, W.; Yang, H.-J.; Hu, J.; Guo, C.-Y. Solubilities of Diglycolic Acid Esters at Temperatures Ranging from (343 to 363) K in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, *55*, 694–697.

(204) Rodriguez-Reartes, S. B.; Cismondi, M.; Franceschi, E.; Corazza, M. L.; Oliveira, J. V.; Zabaloy, M. S. High-Pressure Phase Equilibria of Systems Carbon Dioxide + N-Eicosane and Propane + N-Eicosane. J. Supercrit. Fluids **2009**, 50, 193–202.

(205) Coelho, J. P.; Bernotaityte, K.; Miraldes, M. A.; Mendonca, A. F.; Stateva, R. P. Solubility of Ethanamide and 2-Propenamide in Supercritical Carbon Dioxide. Measurements and Correlation. *J. Chem. Eng. Data* **2009**, *54*, 2546–2549.

(206) Schwarz, C. E.; Bonthuys, G. J. K.; Knoetze, J. H.; Burger, A. J. The Influence of Functional End Groups on the High-Pressure Phase Equilibria of Long Chain Molecules in Supercritical Propane. *J. Supercrit. Fluids* **2008**, *46*, 233–237.

(207) Fan, J.; Hou, J.; Wu, W.; Zhang, J.; Ren, S.; Chen, X. Levulinic Acid Solubility in Supercritical Carbon Dioxide with and without Ethanol as Cosolvent at Different Temperatures. *J. Chem. Eng. Data* **2010**, *55*, 2316–2321.

(208) Sahihi, M.; Ghaziaskar, H. S.; Hajebrahimi, M. Solubility of Maleic Acid in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **2010**, 55, 2596–2599.

(209) Kaboudvand, M.; Ghaziaskar, H. S. Solubilty of Tridodecylamine in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* 2008, 53, 1841–1845.

(210) Schwarz, C. E.; Nieuwoudt, I.; Knoetze, J. H. Solubility Measurements of High Molecular Mass n-Alkanes, n-Alcohols and Alcohol Ethoxylates in Supercritical Propane. *Fluid Phase Equilib*. **2006**, 247, 169–174.

(211) Byun, H.-S.; Lee, D.-H.. Phase Behavior of Binary and Ternary Mixtures of Poly(decyl acrylate)—Supercritical Solvents—Decyl Acrylate and Poly(decyl methacrylate)— $CO_2$ —Decyl Methacrylate Systems. *Ind. Eng. Chem. Res.* **2006**, *45*, 3373–3380.

(212) Byun, H.-S.; Lee, D.-H. Cosolvent Effect and Solubility Measurement for Butyl (Meth)acrylate Polymers in Benign Environmental Supercritical Solvents. *Ind. Eng. Chem. Res.* **2006**, *45*, 3354–3365.

(213) Gregorowicz, J. Phase Behaviour of L-Lactide in Supercritical Carbon Dioxide at High Pressures. J. Supercrit. Fluids 2008, 46, 105–111.

(214) Munto, M.; Ventosa, N.; Veciana, J. Synergistic Solubility Behaviour of a Polyoxyalkylene Block Co-Polymer and its Precipitation from Liquid CO₂-Expanded Ethanol as Solid Microparticles. *J. Supercrit. Fluids* **2008**, 47, 290–295.

(215) Park, J.-Y.; Kim, S. Y.; Byun, H.-S.; Yoo, K.-P.; Lim, J. S. Cloud Points of Poly( $\varepsilon$ -caprolactone), Poly(L-lactide), and Polystyrene in Supercritical Fluids. *Ind. Eng. Chem. Res.* **2006**, *45*, 3381–3387.

(216) Byun, H.-S.; Lee, D.-H.; Lim, J. S.; Yoo, K.-P. Phase Behavior of the Binary and Ternary Mixtures of Biodegradable Poly(ε-caprolactone) in Supercritical Fluids. *Ind. Eng. Chem. Res.* **2006**, 45, 3366–3372.

(217) Bender, J. P.; Feitein, M.; Mazutti, M. A.; Franceschi, E.; Corazza, M. L.; Oliveira, J. V. Phase Behaviour of the Ternary System {Poly( $\varepsilon$ -caprolactone) + Carbon Dioxide + Dichloromethane}. J. Chem. Thermodyn. **2010**, 42, 229–233. (218) Rodríguez Rojo, S.; Martín, A.; Saez Calvo, E.; Cocero, M. J. Solubility of Polycaprolactone in Supercritical Carbon Dioxide with Ethanol as Cosolvent. *J. Supercrit. Fluids* **2009**, *54*, 962–965.

(219) Van Schilt, M. A.; Wering, R. M.; van Meerendonk, W. J.; Kemmere, M. F.; Keurentjes, J. T. F.; Kleiner, M.; Sadowski, G.; de Loos, T. W. High-Pressure Phase Behavior of the System PCHC–CHO–  $CO_2$  for the Development of a Solvent-Free Alternative toward Polycarbonate Production. *Ind. Eng. Chem. Res.* **2005**, *44*, 3363–3366.

(220) Gregorowicz, J. Solid—Fluid Phase Behaviour of Linear Polyethylene Solutions in Propane, Ethane and Ethylene at High Pressures. J. Supercrit. Fluids **2007**, *43*, 357–366.

(221) Kojima, J.; Takenaka, M.; Nakayama, Y.; Saeki, S. Measurements of Phase Behavior for Polyethylene in Hydrocarbons, Halogenated Hydrocarbons, and Oxygen-Containing Hydrocarbons, at High Pressure and High Temperature. *J. Chem. Eng. Data* **2009**, *54*, 1585–1591.

(222) Jiang, Y.; Liu, M.; Sun, W.; Li, L.; Qian, Y. Phase Behavior of Poly(lactic acid)/Poly(ethylene glycol)/Poly(lactic acid) (PLA–PEG–PLA) in Different Supercritical Systems of  $CO_2$  + Dichloromethane and  $CO_2 + C_2H_5OH$  + Dichloromethane. *J. Chem. Eng. Data* **2010**, *55*, 4844–4848.

(223) Vopilov, Yu. E.; Nikitin, L. N.; Khokhlov, A. R.; Bouznik, V. M. Separation of Low-Molecular-Weight Fractions of Ultrafine Polytetra-fluoroethylene with Supercritical Carbon Dioxide. *Russ. J. Phys. Chem. B* **2009**, *3*, 1074–1081.

(224) Tapriyal, D.; Wang, Y.; Enick, R. M.; Johnson, J. K.; Crosthwaite, J.; Thies, M. C.; Paik, I. H.; Hamilton, A. D. Poly(vinyl acetate), poly((1-O-(vinyloxy) ethyl-2,3,4,6-tetra-O-acetyl- $\beta$ -D-glucopyranoside) and amorphous poly(lactic acid) are the most CO₂-soluble oxygenated hydrocarbon-based polymers. *J. Supercrit. Fluids* **2008**, *46*, 252–257.

(225) Milanesio, J. M.; Mabe, G. D. B.; Ciolino, A. E.; Quinzani, L. M.; Zabaloy, M. S. Experimental Cloud Points for Polybutadiene + Light Solvent and Polyethylene + Light Solvent Systems at High Pressure. J. Supercrit. Fluids **2010**, 55, 363–372.

(226) Galy, J.; Sawada, K.; Fournel, B.; Lacroix-Desmazes, P.; Lagerge, S.; Persin, M. Decontamination of Solid Substrates Using Supercritical Carbon Dioxide—Application with Trade Hydrocarbonated Surfactants. J. Supercrit. Fluids **2007**, *42*, 69–79.

(227) Chrastil, J. Solubility of Solids and Liquids in Supercritical Gases. J. Phys. Chem. 1982, 86, 3016–3021.

(228) Sung, H.-D.; Shim, J.-J. Solubility of C. I. Disperse Red 60 and C. I. Disperse Blue 60 in Supercritical Carbon Dioxide. *J. Chem. Eng. Data* **1999**, *44*, 985–989.

(229) González, J. C.; Vieytes, M. R.; Botana, A. M.; Vieites, J. M.; Botana, L. M. Modified Mass Action Law-Based Model To Correlate the Solubility of Solids and Liquids in Entrained Supercritical Carbon Dioxide. J. Chromatogr., A 2001, 910, 119–125.

(230) Kumar, S. K.; Johnston, K. P. Modelling Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. *J. Supercrit. Fluids* **1988**, *1*, 15–22.

(231) Bartle, K. D.; Clifford, A. A.; Jafar, S. A.; Shilstone, G. F. Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. *J. Phys. Chem. Ref. Data* **1991**, *20*, 713–756.

(232) Mendez-Santiago, J.; Teja, A. S. The Solubility of Solids in Supercritical Fluids. *Fluid Phase Equilib.* **1999**, *158*, 501–510.

(233) Mendez-Santiago, J.; Teja, A. S. Solubility of Solids in Supercritical Fluids: Consistency of Data and a New Model for Cosolvent Systems. *Ind. Eng. Chem. Res.* **2000**, 39, 4767–4771.

(234) Sauceau, M.; Letourneau, J.-J.; Richon, D.; Fages, J. Enhanced Density-Based Models for Solid Compound Solubilities in Supercritical Carbon Dioxide with Cosolvents. *Fluid Phase Equilib.* **2003**, *208*, 99–113.

(235) del Valle, J. M.; Aguilera, J. M. An Improved Equation for Predicting the Solubility of Vegetable Oils in Supercritical CO₂. Ind. Eng. Chem. Res. **1988**, 27, 1551–1554.

(236) Yu, Z.-R.; Singh, B.; Rizvi, S. S. H.; Zollweg, J. A. Solubilities of Fatty Acids, Fatty Acid Esters, and Fats and Oils in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **1994**, *7*, 51–59.

(237) Gordillo, M. D.; Blanco, M. A.; Molero, A.; Ossa, E. M. D. L. Solubility of the Antibiotic Penicillin G in Supercritical Carbon Dioxide. *J. Supercrit. Fluids* **1999**, *15*, 183–185.

(238) Gordillo, M. D.; Pereyra, C.; Ossa, E. M. D. L. Measurement and Correlation of Solubility of Disperse Blue 14 in Supercritical Carbon Dioxide. J. Supercrit. Fluids **2003**, *27*, 31–37.

(239) Ziger, D. H.; Eckert, C. A. Correlation and Prediction of Solid-Supercritical Fluid Phase Equilibriums. *Ind. Eng. Chem. Process Des. Dev.* **1983**, *22*, 582-588.

(240) Anderson, G. M.; Castet, S.; Schott, J.; Mesmer, R. E. The Density Model for Estimation of Thermodynamic Parameters of Reactions at High Temperatures and Pressures. *Geochim. Cosmochim. Acta* **1991**, 55, 1769–1779.

(241) Wubbolts, F. E.; Bruinsma, O. S. L.; Van Rosmalen, G. M. Measurement and Modeling of the Solubility of Solids in Mixtures of Common Solvents and Compressed Gases. *J. Supercrit. Fluids* **2004**, *32*, 79–87.

(242) Sovova, H. Solubility of Ferulic Acid in Supercritical Carbon Dioxide with Ethanol as Cosolvent. *J. Chem. Eng. Data* **2001**, *46*, 1255–1257.

(243) Anderko, A. In *Equations of State for Fluids and Fluid Mixtures*; Sengers, J. V., Kayser, R. F., Peters, C. J., White, H. J., Eds.; Elsevier: Amsterdam, 2000; pp 75–126.

(244) Dohrn, R. Berechnung von Phasengleichgewichten; Friedr. Vieweg & Sohn Verlagsgesellschaft mbH: Braunschweig, Germany, 1994.

(245) Anderko, A. Equation-of-State Methods for the Modelling of Phase Equilibria. *Fluid Phase Equilib.* **1990**, *61*, 145–225.